MENGINTEGRASIKAN EXPLAINABLE AI DALAM DETEKSI BERITA HOAKS MELALUI METODE ENSEMBLE LEARNING: RANDOM FOREST DAN ADABOOST

SKRIPSI

Diajukan untuk memenuhi salah satu syarat mencapai derajat Sarjana Program Studi S1-Informatika

disusun oleh WAYAN SURYA ADNYANA 21.11.4160

Kepada

FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA

2025

MENGINTEGRASIKAN EXPLAINABLE AI DALAM DETEKSI BERITA HOAKS MELALUI METODE ENSEMBLE LEARNING: RANDOM FOREST DAN ADABOOST

SKRIPSI

untuk memenuhi salah satu syarat mencapai derajat Sarjana Program Studi S1-Informatika

disusun oleh WAYAN SURYA ADNYANA 21.11.4160

Kepada

FAKULTAS ILMU KOMPUTER
UNIVERSITAS AMIKOM YOGYAKARTA
YOGYAKARTA

2025

HALAMAN PERSETUJUAN

SKRIPSI

MENGINTEGRASIKAN EXPLAINABLE AI DALAM DETEKSI BERITA HOAKS MELALUI METODE ENSEMBLE LEARNING: RANDOM FOREST DAN ADABOOST

yang disusun dan diajukan oleh

WAYAN SURYA ADNYANA 21.11.4160

telah disetujui oleh Dosen Pembimbing Skripsi pada tanggal 26 Mei 2025

Desen-Pembinibing,

Arifiyanto Hadinegoro, S.Kom, M.T NIK. 190302289

HALAMAN PENGESAHAN

SKRIPSI

MENGINTEGRASIKAN EXPLAINABLE AI DALAM DETEKSI BERITA HOAKS MELALUI METODE ENSEMBLE LEARNING: RANDOM FOREST DAN ADABOOST

yang disusun dan diajukan oleh

WAYAN SURYA ADNYANA

21.11.4160

Telah dipertahankan di depan Dewan Penguji pada tanggal 26 Mei 2025

Susunan Dewan Penguji

Tanda Tang

Nama Penguji

Ainul Yaqin, S.Kom., M.Kom. NIK, 198302255

Uvock Anggoro Saputro, S.Kom., M.Kom. NIK, 190302419

Arifiyanto Hadinegoro, S.Kom., M.T. NIK. 190302289

> Skripsi ini telah diterima sebagai salah satu persyaratan untuk memperoleh gelar Sarjana Komputer Tanggal 26 Mei 2025

DEKAN FAKULTAS ILMU KOMPUTER

Prof. Dr. Kusrini, M.Kom. NIK. 190302106

HALAMAN PERNYATAAN KEASLIAN SKRIPSI

Yang bertandatangan di bawah ini,

Nama mahasiswa : Wayan Surya Adnyana

NIM : 21.11.4160

Menyatakan bahwa Skripsi dengan judul berikut:

MENGINTEGRASIKAN EXPLAINABLE AI DALAM DETEKSI BERITA HOAKS MELALUI METODE ENSEMBLE LEARNING: RANDOM FOREST DAN ADABOOST

Dosen Pembimbing : Arifiyanto Hadinegoro, S.Kom, M.T.

- Karya tulis ini adalah benar-benar ASLI dan BELUM PERNAH diajukan untuk mendapatkan gelar akademik, baik di Universitas AMIKOM Yogyakarta maupun di Perguruan Tinggi lainnya.
- Karya tulis ini merupakan gagasan, rumusan dan penelitian SAYA sendiri, tanpa bantuan pihak lain kecuali arahan dari Dosen Pembimburg.
- Dalam karya tulis ini tidak terdapat karya atau pendapat orang lain, kecuali secara tertulis dengan jelas dicantumkan sebagai acuan dalam naskah dengan disebutkan nama pengarang dan disebutkan dalam Daftar Pustaka pada karya tulis ini.
- Perangkat lunak yang digunakan dalam penelitian ini seperuhnya menjadi tanggung jawab SAYA, bukan tanggung jawab Universitas AMIKOM Yogyakarta.
- Pernyataan ini SAYA buat dengan sesunggulunya, apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka SAYA bersedia menerima SANKSI AKADEMIK, dengan pencabutan gelar yang sudah diperoleh, serta sanksi lainnya sesuai dengan norma yang berlaku di Perguruan Tinggi.

Yogyakarta, 26 Mei 2025

Yang Menyatakan,

(In

Wayan Surya Adnyana

HALAMAN PERSEMBAHAN

Terselesaikannya skripsi ini merupakan hasil dari dukungan dan bantuan berbagai pihak yang terus memberikan semangat dan motivasi kepada penulis selama proses penyusunannya. Untuk itu, dengan rasa hormat penulis menyampaikan terima kasih kepada:

- Orang tua, yang selalu memberikan dukungan moral dan materi yang tak pernah putus, menjadi sumber kekuatan utama bagi penulis dalam menyelesaikan skripsi ini.
- Bapak Arifiyanto Hadinegoro, S.Kom, M.T, selaku dosen pembimbing yang telah memberikan bimbingan, masukan, dan motivasi dengan penuh kesabaran serta dedikasi hingga skripsi ini dapat diselesaikan dengan baik.
- Teman-teman seperjuangan, yang senantiasa memberikan semangat, kebersamaan, dan dorongan selama masa studi hingga penyelesaian karya ini, khususnya kepada: Mahendra Bayu Prayoga, Bagas Restya Ermawan, Aldino Marsel Pratama, Reihansyah Maulana, dan Hafid Afnan.

KATA PENGANTAR

Puji syukur ke hadiran Tuhan Yang Maha Esa atas limpahan rahmat dan

karunia-Nya sehingga penulis dapat menyelesaikan skripsi ini dengan baik. Skripsi

ini diajukan sebagai salah satu syarat untuk menyelesaikan program studi pada

tingkat pendidikan tinggi.

Dalam proses penyusunan skripsi ini, penulis mendapatkan banyak

dukungan dan bimbingan dari berbagai pihak. Oleh karena itu, dengan segala

kerendahan hati, penulis mengucapkan terima kasih yang sebesar-besarnya kepada

Bapak Arifiyanto Hadinegoro, S.Kom, M.T. selaku Dosen Pembimbing yang telah

memberikan arahan, masukan, dan motivasi selama penyusunan skripsi ini. Ucapan

terima kasih juga penulis sampaikan kepada Tim Dosen Penguji atas saran dan

kritik yang membangun untuk perrbaikan karya ini.

Penulis juga mengucapkan terima kasih kepada orang tua yang senantiasa

memberikan doa, dukungan moral, dan materi selama proses studi hingga

penyelesaian skripsi ini. Tidak lupa, ucapan terima kasih disampaikan kepada

seluruh teman-teman dan orang-orang terdekat yang telah membantu, baik secara

langsung maupun tidak langsung, dalam penyelesaian skripsi ini.

Penulis menyadari bahwa skripsi ini masih jauh dari sempurna. Oleh karena itu, saran dan kritik yang membangun sangat diharapkan untuk perbaikan di masa

A CONTRACTOR OF THE PROPERTY O

yang akan datang. Semoga skripsi ini dapat memberikan manfaat bagi

pengembangan ilmu pengetahuan dan pembaca sekalian.

Yogyakarta, 23 Maret 2025

Penulis

vi

DAFTAR ISI

HALA	MAN JUDUL	1
HALA	MAN PERSETUJUAN	
HALA	MAN PENGESAHAN	
HALA	MAN PERNYATAAN KEASLIAN SK	RIPSIIV
HALA	MAN PERSEMBAHAN	V
KATA	PENGANTAR	VI
DAFT	AR ISI	VII
DAFT	AR TABEL	x
DAFT	AR GAMBAR	XI
DAFT	AR LAMPIRAN	XIII
DAFT	AR LAMBANG DAN SINGKATAN	XIV
DAFT	AR ISTILAH	xv
INTIS,	ARI	XVI
ABSTE	RACT	XVII
BABI	PENDAHULUAN	1
1.1	LATAR BELAKANG MASALAH	1
1.2	RUMUSAN MASALAH	
1.3	BATASAN MASALAH	2
1.4	TUJUAN PENELITIAN	3
1.5	MANFAAT PENELITIAN	3
1.6	SISTEMATIKA PENULISAN	4
BAB II	TINJAUAN PUSTAKA	5
2.1	STUDI LITERATUR	5
2.2	DASAR TEORI	13

2.2.1 Berita Hoaks	13
2.2.2 Term Frequency-Inverse Document Frequency (TF-IDF)	13
2.2.3 Machine Learning	14
2.2.4 Random Forest	15
2.2.5 AdaBoost	16
2.2.6 Ensemble Voting	18
2.2.7 Explainable AI (XAI)	20
2.2.8 Confusion Matrix	21
BAB III METODE PENELITIAN	23
3.1 ALUR PENELITIAN.	23
3.1.1 Pengumpulan Data	23
3.1.2 Pengolahan Data	24
3.1.3 Pengembangan & Implementasi Metodologi	24
3,1,3,1 Data Gathering	25
3.1.3.2 Preprocessing	26
3.1.3.3 Modeling	31
3.1.4 Analisis Hasil	34
3.1.5 Dokumentasi	
3.2 ALAT DAN BAHAN	34
BAB IV HASIL DAN PEMBAHASAN	36
4.1 PENGUMPULAN DATA	36
4.2 PENGOLAHAN DATA	37
4.3 PENGEMBANGAN & IMPLEMENTASI METODOLOGI	37
4.3.1 Data Gathering	37
4.3.2 Preprocessing	40
4.3.2.1 Case-Folding	41
4.3.2.2 Text Cleaning	42
4.3.2.3 Stopwords Removal	43
4.3.2.4 Tokenizing	45
4 3 2 5 Stemming	46

4.	3.3 Modeling	49
	4.3.3.1 Feature Extraction With TF-IDF.	50
	4.3.3.2 Data Spliting	52
	4.3.3.3 Hasil Pemodelan Random Forest	52
	4.3.3.4 Hasil Pemodelan AdaBoost	55
	4.3.3.5 Hasil Pemodelan Ensemble Voting	57
	4.3.3.6 Hasil Explainable AI dengan LIME	59
4.4	Analisis Hasil	62
4.5	DOKUMENTASI	66
BABA	V PENUTUP	67
5.1	KESIMPULAN	67
5.2	SARAN	67
REFE	RENSI	69
LAMP	PIRAN	72

DAFTAR TABEL

TABEL 2.1 KEASLIAN PENELITIAN
TABEL 3.1 CONTOH PROSES CASE-FOLDING
TABEL 3.2 CONTOH PROSES TEXT CLEANING
TABEL 3.3 CONTOH PROSES STOPWORD REMOVAL2
TABEL 3.4 CONTOH PROSES TOKENIZING
TABEL 3.5 CONTOH PROSES STEMMING
TABEL 4.1 HASIL EKSPLORASI AKURASI PADA STUDI LITERATUR3
TABEL 4.2 PERBANDINGAN AKURASI MODEL KLASIFIKASI6
TABEL 4.3 PERBANDINGAN AKURASI HASIL PENELITIAN SAAT INI
DENGAN STUDI SEBELUMNYA


DAFTAR GAMBAR

GAMBAR 2.1 TINGKAT ERROR RANDOM FOREST BERDASARKAN	
JUMLAH POHON	16
GAMBAR 2.2 PERSENTASE TINGKAT ERROR ADABOOST	
BERDASARKAN ITERASI	18
GAMBAR 2.3 ILUSTRASI ENSEMBLE VOTING	19
GAMBAR 2.4 CONFUSION MATRIX 2X2	21
GAMBAR 3.1 ALUR PENELITIAN	23
GAMBAR 3.2 ALUR PERANCANGAN MODEL MACHINE LEARNING	25
GAMBAR 4.1 DATASET BERITA HOAX DAN VALID	38
GAMBAR 4.2 HASIL SCRAPPING DARI WEBSITE TURNBACKHOAX.	ID38
GAMBAR 4.3 DATA DARI KAGGLE	39
GAMBAR 4.4 SEBELUM PEMBERSIHAN DATA DUPLIKAT	40
GAMBAR 4.5 SETELAH PEMBERSIHAN DATA DUPLIKAT	40
GAMBAR 4.6 HASIL CASE-FOLDING	41
GAMBAR 4.7 HASIL TEXT CLEANING.	43
GAMBAR 4.8 HASIL STOPWORDS REMOVAL	45
GAMBAR 4.9 HASIL PROSES TOKENIZING	46
GAMBAR 4.10 HASIL STEMMING	48
GAMBAR 4.11 DISTRIBUSI LABEL SETELAH PREPROCESSING	
GAMBAR 4.12 DATASET BERITA HOAKS	51
GAMBAR 4.13 PERBANDINGAN NILAI TF-IDF	51
GAMBAR 4.14 HASIL EVALUASI MODEL RANDOM FOREST	53
CAMBARA IS CONTUSION MATRIX MODEL BANDOM POBEST	

GAMBAR 4.16 HASIL CROSS-VALIDATION MODEL RANDOM FOREST
54
GAMBAR 4.17 HASIL EVALUASI MODEL ADABOOST55
GAMBAR 4.18 CONFUSION MATRIX MODEL ADABOOST56
GAMBAR 4.19 HASIL CROSS-VALIDATION MODEL ADABOOST57
GAMBAR 4.20 HASIL EVALUASI MODEL ENSEMBLE VOTING58
GAMBAR 4.21 CONFUSION MATRIX MODEL ENSEMBLE VOTING59
GAMBAR 4.22 HASIL CROSS-VALIDATION MODEL ENSEMBLE VOTING
GAMBAR 4.22 VISUALISASI XII PADA DATA UJI MODEL ENSEMBLE VOTING 60
GAMBAR 4.23 HASIL PENGUJIAN MODEL ADABOOST MENGGUNKAN XAI
GAMBAR 4.24 HASIL PENGUJIAN MODEL ENSEMBLE VOTING
MENGGUNAKAN XAI

DAFTAR LAMPIRAN

LAMPIRAN I KODE SCRAPPING DATA72	2
AMPIRAN 2 KODE PENGGABUNGAN DATASET75	5
LAMPIRAN 3 KODE DETEKSI BERITA HOAKS7	
LAMPIRAN 4 PENGGUNAAN MODEL DETEKSI HOAX	ş

DAFTAR LAMBANG DAN SINGKATAN

 ξ Slack Variable Ω konstanta penalti

LIME Local Interpretable Model-agnostic Explanations

SHAP SHapley Additive exPlanations

XAI Explainable Artificial Intelligence

RF Random Forest

AdaBoost Adaptive Boosting

TF-IDF Term Frequency-Inverse Document Frequency

CSV Comma-Separated Values

CV Cross Validation

DAFTAR ISTILAH

Soft Voting Metode ensemble yang memilih kelas berdasarkan

rata-rata probabilitas klasifikasi dari semua model

Hard Voting Metode ensemble yang memilih kelas berdasarkan

suara terbanyak dari masing-masing model

LIME Teknik untuk menjelaskan prediksi model machine

learning

Ensemble Learning Teknik penggabungan beberapa model untuk

meningkatkan akurasi

Hoaks Informasi yang tidak benar atau menyesatkan

Sastrawi Library stemming Bahasa Indonesia

Machine learning Mesin belajar dari data

Lowercase Mengubah teks ke huruf kecil

Preprocessing Pemrosesan awal data

Confusion Matrix Tabel evaluasi model

Library Kumpulan kode siap pakai

INTISARI

Berita hoaks semakin marak dengan berkembangnya teknologi informasi dan media sosial, yang berdampak pada opini publik dan stabilitas sosial. Deteksi berita hoaks berbasis teks masih menghadapi tantangan dalam akurasi dan transparansi model. Oleh karena itu, penelitian ini mengintegrasikan Explainable Al (XAI) dalam ensemble learning menggunakan Random Forest, AdaBoost, dan Ensemble Voting untuk meningkatkan performa deteksi berita hoaks. Metode yang digunakan meliputi pengumpulan dataset dari sumber terpercaya, preprocessing teks seperti case folding, stopword removal, tokenization, dan stemming, serta ekstraksi fitur menggunakan TF-IDF. Model Random Forest, AdaBoost, dan Ensemble Voting diterapkan untuk klasifikasi, dengan evaluasi menggunakan metrik akurasi, precision, recall, dan FI-score. Untuk meningkatkan transparansi model, digunakan LIME (Local Interpretable Model-agnostic Explanations). Hasil penelitian menunjukkan bahwa AdaBoost memiliki akurasi tertinggi sebesar 99.54%, tetapi Ensemble Voting lebih stabil dalam mengklasifikasikan berita hoaks dan valid. Integrasi XAI dengan LIME meningkatkan transparansi model, memungkinkan pengguna memahami faktor yang memengaruhi keputusan klasifikasi. Hasil penelitian ini dapat dimanfaatkan oleh platform media sosial, lembaga pemeriksa fakta, serta pengembang sistem deteksi berita hoaks. Penelitian selanjutnya dapat mengeksplorasi deteksi berita hoaks berbasis gambar dan video menggunakan computer vision dan deep learning untuk menangani penyebaran informasi palsu secara lebih komprehensif.

Kata kunci: Deteksi Berita Hoaks, Klasifikasi Berita, Explainable AI (XAI), Ensemble Learning, Machine Learning

ABSTRACT

Fake news has become increasingly prevalent with the advancement of information technology and social media, impacting public opinion and social stability. Text-based fake news detection still faces challenges in terms of accuracy and model transparency. Therefore, this study integrates Explainable AI (XAI) into ensemble learning using Random Forest, AdaBoost, and Ensemble Voting to enhance the performance of fake news detection. The methodology includes data collection from reliable sources, text preprocessing such as case folding, stopword removal, tokenization, and stemming, and feature extraction using TF-IDF. The Random Forest, AdaBoost, and Ensemble Voting models were applied for classification, with performance evaluation based on accuracy, precision, recall, and F1-score. To improve model transparency, LIME (Local Interpretable Model-Agnostic Explanations) was employed. The results indicate that AdaBoost achieved the highest accuracy of 99.54%, while Ensemble Voting demonstrated greater stability in classifying both fake and valid news. The integration of XAI with LIME enhances model transparency, allowing users to understand the factors influencing classification decisions. The findings of this study can be utilized by social media platforms, fact-checking institutions, and developers of fake news detection systems. Future research may explore fake news detection based on images and videos using computer vision and deep learning to address the spread of misinformation more comprehensively.

Keyword: Fake News Detection, News Classification, Explainable AI (XAI), Ensemble Learning, Machine Learning