## PERBANDINGAN METODE NAIVE BAYES DAN METODE CNN PADA KLASIFIKASI BERITA BBC NEWS

### SKRIPSI

Diajukan untuk memenuhi salah satu syarat mencapai derajat Sarjana Program Studi S1 Informatika



disusun oleh AKBAR NOOR HARTANTO 20.11.3484

Kepada

# FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA

2024

## PERBANDINGAN METODE NAIVE BAYES DAN METODE CNN PADA KLASIFIKASI BERITA BBC NEWS

### SKRIPSI

Diajukan untuk memenuhi salah satu syarat mencapai derajat Sarjana Program Studi S1 Informatika



disusun oleh AKBAR NOOR HARTANTO 20.11.3484

Kepada

## FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA 2024

#### HALAMAN PERSETUJUAN

#### SKRIPSI

## PERBANDINGAN METODE NAIVE BAYES DAN METODE CNN PADA KLASIFIKASI BERITA BBC NEWS

yang disusun dan diajukan oleh

Akbar Noor Hartanto

20.11.3484

telah disetujui oleh Dosen Pembimbing Skripsi pada tanggal 23 agustus 2024

Dosen Pembimbing,

Rumini, M.Kom NIK, 190302246

#### HALAMAN PENGESAHAN

#### SKRIPSI

## PERBANDINGAN METODE NAIVE BAYES DAN METODE CNN PADA KLASIFIKASI BERITA BBC NEWS

yang disusun dan diajukan oleh

Akbar Noor Hartanto

20.11.3484

Telah dipertahankan di depan Dewan Penguji pada tanggal 23 agustus 2024

Nama Penguji

Susunan Dewan Penguji

Melany Mustika Dewi NJK. 190302455

Ike Verawati, M.Kom NIK. 190302237

Rumini, M.Kom NIK. 190302246 Tanda Tangan

Skripsi ini telah diterima sebagai salah satu persyaratan untuk memperoleh gelar Sarjana Komputer Tanggal 23 agustus 2024

#### DEKAN FAKULTAS ILMU KOMPUTER



Hanif Al Fatta,S.Kom., M.Kom., Ph.D. NIK. 190302096

#### HALAMAN PERNYATAAN KEASLIAN SKRIPSI

Yang bertandatangan di bawah ini,

Nama mahasiswa : Akbar Noor Hartanto NIM : 20.11.3484

Menyatakan bahwa Skripsi dengan judul berikut:

#### PERBANDINGAN METODE NAIVE BAYES DAN METODE CNN PADA KLASIFIKASL BERITA BBC NEWS

Dosen Pembimbing : Rumini, M.Kom

- Karya tulis ini adalah benar-benar ASLI dan BELUM PERNAH diajukan untuk mendapatkan gelar akademik, baik di Universitas AMIKOM Yogyakarta maupun di Perguruan Tinggi lainnya.
- Karya tulis ini merupakan gagasan, rumusan dan penelitian SAYA sendiri, tanpa bantuan pihak lain kecuali arahan dari Dosen Pembimbing.
- Dalam karya tulis ini tidak terdapat karya atau pendapat orang lain, kecuali secara tertulis dengan jelas dicantumkan sebagai acuan dalam naskah dengan disebutkan nama pengarang dan disebutkan dalam Daftar Pustaka pada karya tulis ini.
- Perangkat lunak yang digunakan dalam penelitian ini sepenuhnya menjadi tanggung jawab SAYA, bukan tanggung jawab Universitas AMIKOM Yogyakarta.
- 5. Pernyataan ini SAYA buat dengan sesungguhnya, apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka SAYA bersedia menerima SANKSI AKADEMIK dengan pencabutan gelar yang sudah diperoleh, serta sanksi lainnya sesuai dengan norma yang berlaku di Perguruan Tinggi.

Yogyakarta, 23 agustus 2024

Yang Menyatakan,

am



Akbar Noor Hartanto

#### HALAMAN PERSEMBAHAN

Dengan penuh rasa syukur kepada Allah SWT, atas segala rahmat dan karunia-Nya, penulis dapat skripsi ini yang berjudul "Perbandingan Metode Naive Bayes dan Metode CNN pada Klasifikasi Berita BBC News". Perjalanan menyelesaikan skripsi ini tidaklah mudah, namun berkat dukungan dan doa dari orang-orang yang mendukung penulis, akhirnyn skripsi ini dapat terselesaikan. Oleh karena itu, kupersembahkan dengan penuh rasa hormat dan terima kasih skripsi ini untuk:

- Papah dan Mamah serta Eyang tercinta, Terima kasih atas doa, cinta, dukungan, dan pengorbanan yang tiada henti. Setiap langkahku adalah berkat doa kalian,
- Kakak-kakakku tercinta, Yang selalu memberikan motivasi, semangat, dan dukungan yang berarti dalam setiap prosesku. Terima kasih atas kebersamaan dan cinta kasih kalian.
- Kepada Ibu Rumini, M.Kom selaku Dosen Pembimbing, Yang telah dengan sabar memberikan arahan, bimbingan, dan dukungan akademik hingga terselesaikannya skripsi ini.
- Seluruh Staf Dosen Yang telah memberikan ilmu dan pengalaman berharga selama masa studi, sehingga aku bisa mencapai titik ini.
- Teman-teman kelas 20IF03, Kebersamaan dan dukungan kalian sangat berarti dalam perjalanan ini. Terima kasih atas kenangan, persahabatan, dan semangat yang terus menyala.

#### KATA PENGANTAR

Puji syukur penulis panjatkan ke hadirat Allah SWT atas segala rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi ini yang berjudul "Perbandingan Metode Naive Bayes dan Metode CNN pada Klasifikasi Berita BBC News". Skripsi ini diajukan sebagai salah satu syarat untuk menyelesaikan studi Strata 1 di Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Amikom Yogyakarta.

Dalam penyusunan skripsi ini, penulis menyadari bahwa tanpa bantuan, bimbingan, dan dukungan dari berbagai pihak, penulis tidak akan dapat menyelesaikan skripsi ini dengan baik. Oleh karena itu, pada kesempatan ini penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada:

- Bapak Prof Dr. M. Suyanto, M.M selaku Rektor Universitas. Amikom Yogyakarta.
- Bapak Hanif Al Fatta, S.Kom., M.Kom selaku Dekan Fakultas Ilmu Komputer Universitas Amikom Yogyakarta
- Ibu Windha Mega Pradnya D, M.Kom selaku ketua program studi S1 Informatika.
- 4. Ibu Rumini, M.Kom selaku dosen pembimbing.
- Bapak dan Ibu dosen Universitas Amikom Yogyakarta yang telah mengajar dan memberikan ilmu pengetahuan selama dibangku perkuliahan.

Penulis menyadari bahwa skripsi ini masih jauh dari kesempurnaan. Oleh karena itu, penulis mengharapkan kritik dan saran yang membangun demi perbaikan di masa yang akan datang. Semoga skripsi ini dapat memberikan manfaat bagi pembaca dan pengembangan ilmu pengetahuan, khususnya di bidang klasifikasi berita dengan metode Naive Bayes dan CNN.

Yogyakarta, September 2024 Penulis

## DAFTAR ISI

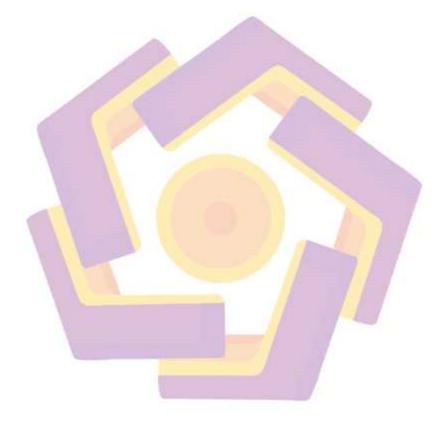
| HALAM   | AN JUDUL                                 | i    |
|---------|------------------------------------------|------|
| HALAM   | AN PERSETUJUAN                           | ii   |
| HALAM   | AN PENGESAHAN                            | iii  |
| HALAM   | AN PERNYATAAN KEASLIAN SKRIPSI           | iv   |
| HALAM   | AN PERSEMBAHAN                           | v    |
| KATA P  | ENGANTAR                                 | vi   |
| DAFTAR  | t ISI                                    | vii  |
| DAFTAR  | A TABEL                                  | x    |
| DAFTAR  | R GAMBAR                                 | xi   |
| DAFTAR  | RLAMPIRAN                                | xiii |
| DAFTAR  | R LAMBANG DAN SINGKATAN                  | xiv  |
| DAFTAF  | RISTILAH                                 | xv   |
| INTISAR | a la | xvi  |
| ABSTRA  | CT                                       | xvii |
| BAB1 P  | ENDAHULUAN                               | 1    |
| 1.1     | Latar Belakang                           | 1    |
| 1.2     | Rumusan Masalah                          | 2    |
| 1.3     | Batasan Masalah                          | 2    |
| 1.4     | Tujuan Penelitian                        | 3    |
| 1.5     | Manfaat Penelitian                       | 3    |
| 1.6     | Sistematika Penulisan                    | 3    |
| BABII   | IINJAUAN PUSTAKA                         | 5    |
| 2.1     | Studi Literatur                          | 5    |
| 2.2     | Dasar Teori                              | 12   |
| 2.2.1   | 1. Python                                | 12   |
| 2.2.2   | 2. Machine Learning                      | 12   |
| 2.2.3   | 3. Deep Learning                         | 12   |
| 2.2.4   | 4. Text Mining                           | 13   |
| 2.2.5   | 5. Stopwords                             | 13   |
| 2.2.0   | 5. Data Training                         | 14   |
| 2.2.7   | 7. Train-Test Split                      | 15   |
|         |                                          |      |

| 2.2.8.     | One-Hot Encoding                        | 15 |
|------------|-----------------------------------------|----|
| 2.2.9.     | Tokenize dan Encode                     | 15 |
| 2.2.10.    | Naïve Bayes                             | 16 |
| 2.2.11.    | Sigmoid                                 | 19 |
| 2.2.12     | Convolutional Neural Network (CNN)      | 19 |
| 2.2.13.    | Confusion Matrix                        | 22 |
| BAB III MI | ETODE PENELITIAN                        | 25 |
| 3.1 0      | bjek Penelitian                         | 25 |
| 3.2 A      | lur Penelitian                          | 26 |
| 3.2.1.     | Pengumpulan data                        | 27 |
| 3.2.2.     | Exploratory Data Analysis (EDA)         | 27 |
| 3.2.3.     | Pre-processing Data                     | 29 |
| 3.2.       | 3.1. Stopwords                          | 29 |
| 3.2.3      | 3.2. Data Training                      | 29 |
| 3.2.4.     | Penerapan Model                         | 32 |
| 3.2.4      | 4.1. Naïve Bayex                        | 32 |
| 3.2.4      | 4.2. Convolutional Neural Network (CNN) | 33 |
| 3.2.5.     | Evaluasi Model                          | 36 |
| 3.2.6,     | Perbandingan                            | 36 |
| 3.3 A      | lat dan Bahan                           | 37 |
| BAB IV HA  | ASIL DAN PEMBAHASAN                     | 38 |
| 4.1. Po    | engumpulan Data                         | 38 |
| 4.2. E     | xploratory Data Analysis (EDA)          | 39 |
| 4.3. P     | re-processing data                      | 43 |
| 4.3.1.     | Stopwords                               | 43 |
| 4.3.2.     | Data Training                           | 47 |
| 4.3.       | 2.1. Train-Test Split                   | 47 |
| 4.3.,      | 2.2. One-Hot Encoding                   | 51 |
| 4.3.2      | 2.3. Normalisasi                        | 61 |
| 4.3.       | 2.4. Tokenize                           | 64 |
| 4.3.2      | 2.5. Encode                             | 68 |
| 4.3.2      | 2.6. Padding                            | 69 |
| 4.4. Pe    | enerapan Model                          | 70 |
| 4.4.1.     | Naïve Bayes                             | 70 |

| aluasi Model<br>Naïve Bayes<br>Convolutional Neural Network (CNN)<br>ssil Perbandingan Evaluasi<br>UTUP<br>esimpulan<br>ran | 91<br>93<br>95<br>97<br>97<br>97<br>98<br>101 |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Convolutional Neural Network (CNN)<br>asil Perbandingan Evaluasi<br>IUTUP<br>esimpulan<br>ran                               | 93<br>95<br>97<br>97<br>97<br>98              |
| isil Perbandingan Evaluasi<br>IUTUP<br>esimpulan<br>ran<br>I                                                                | 95<br>97<br>97<br>97<br>98                    |
| IUTUP<br>esimpulan<br>ran<br>I                                                                                              | 97<br>97<br>97<br>98                          |
| esimpulan<br>ran<br>I                                                                                                       | 97<br>97<br>98                                |
| ran<br>I                                                                                                                    | 97<br>98                                      |
| I                                                                                                                           | 98                                            |
|                                                                                                                             |                                               |
|                                                                                                                             | 101                                           |
|                                                                                                                             |                                               |
|                                                                                                                             | 7                                             |
|                                                                                                                             |                                               |
|                                                                                                                             |                                               |

## DAFTAR TABEL

| Tabel 2.1 Keaslian Penelitian | 9  |
|-------------------------------|----|
| Tabel 2.2 Confusion Matrix    | 23 |
| Tabel 4.1 Tabel dataset       |    |

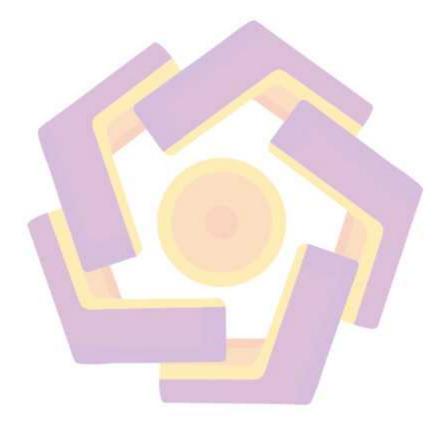


## DAFTAR GAMBAR

| Gambar 2.1 Ilustrasi CNN                                                   | . 20 |
|----------------------------------------------------------------------------|------|
| Gambar 3.1 Alur penelitian                                                 | 26   |
| Gambar 3.2 Ilustrasi Train-Test Split                                      | . 30 |
| Gambar 4.1 Data point dan Features                                         | .40  |
| Gambar 4.2 Kategori unik dalam kolom/fitur category                        | 40   |
| Gambar 4.3 Hasil pembersihan baris dan kolom                               | .41  |
| Gambar 4.4 Code penggabungan kolom                                         | .42  |
| Gambar 4.5 Hasil penggabungan kolom                                        | .42  |
| Gambar 4.6 Distribution of Datapoint Per Category                          | .43  |
| Gambar 4.7 Code proses stopword                                            | . 44 |
| Gambar 4.8 Proses stopword                                                 |      |
| Gambar 4.9 Hasil proses stopword                                           | .47  |
| Gambar 4.10 Code Train-Test Split                                          | 48   |
| Gambar 4.11 X Train dan Y Train                                            | 48   |
| Gambar 4.12 X CV dan Y CV                                                  | .48  |
| Gambar 4.13 Hasil Train-Test Split                                         | . 49 |
| Gambar 4.14 Chart Bar Data latih (Train data)                              | . 50 |
| Gambar 4.15 Chart Bar Data Validasi Silang (cross-validation data/cv data) | . 50 |
| Gambar 4.16 Code proses One-Hot Encoding                                   | . 51 |
| Gambar 4.17 Hasil tokenisasi data latih                                    | . 53 |
| Gambar 4.18 Hasil tokenisasi data validasi silang                          | . 54 |
| Gambar 4.19 Daftar Vocabulary                                              |      |
| Gambar 4.20 One-Hot Encode Matrix Train Data                               |      |
| Gambar 4.21 One-Hot Encode Matrix CV Data                                  | . 61 |
| Gambar 4.22 Code proses normalisasi                                        | . 61 |
| Gambar 4,23 Normalisasi data train                                         | . 64 |
| Gambar 4.24 Normalisasi data validasi silang                               | . 64 |
| Gambar 4.25 Code proses Tokenize                                           |      |
| Gambar 4.26 Indeks Vocabulary                                              | . 67 |
| Gambar 4.27 Sequence hasil Tokenize                                        |      |
| Gambar 4.28 Code proses Encode                                             |      |
| Gambar 4.30 Code proses Padding                                            | . 69 |
| Gambar 4.31 Hasil proses Padding                                           | . 70 |

|   | Gambar 4.32 Code dan hasil Probabilitas Prior                                                              | 70   |
|---|------------------------------------------------------------------------------------------------------------|------|
|   | Gambar 4.33 Code dan hasil Probabilitas Likelihood                                                         | . 72 |
|   | Gambar 4.34 Code dan hasil Probabilitas Posterior                                                          | 73   |
|   | Gambar 4.35 Code dan Kalibrasi Sigmoid                                                                     | 75   |
|   | Gambar 4.36 Code proses Logloss                                                                            | 76   |
|   | Gambar 4.37 Daftar LogLoss                                                                                 |      |
|   | Gambar 4.38 Grafik Cross-Validation Error                                                                  | 78   |
|   | Gambar 4.39 Grafik Cross-Validation Error.                                                                 | . 79 |
|   | Gambar 4.40 Daftar hasil klasifikasi prediksi data silang dengan metode Naïve Bayes                        |      |
|   | Gambar 4.41 Gambar Akurasi model Naive Bayes                                                               |      |
|   | Gambar 4.42 Code proses Convolutional Neural Network (CNN)                                                 | 81   |
|   | Gambar 4.43 Code menampilkan hasil Embedding Layer                                                         |      |
|   | Gambar 4.44 Code menampilkan hasil ConvID Layer                                                            | 84   |
|   | Gambar 4.45 Code menampilkan hasil GlobalMaxPoolng1D Layer                                                 | . 85 |
|   | Gambar 4.46 Code menampilkan hasil Embedding Layer                                                         | . 86 |
|   | Gambar 4.47 Code menampilkan hasil Embedding Layer                                                         | .86  |
| 1 | Gambar 4.48 Code menampilkan hasil Embedding Layer                                                         | 87   |
|   | Gambar 4.49 Grafik loss model Convolutional Neural Network (CNN)                                           | 88   |
|   | Gambar 4.50 Grafik Akurasi model Convolutional Neural Network (CNN)                                        | 89   |
|   | Gambar 4.51 Daftar hasil klasifikasi prediksi kategori dengan metode<br>Convolutional Neural Network (CNN) | . 90 |
|   | Gambar 4.52 Gambar Akurasi model Convolutional Neural Network (CNN)                                        | . 90 |
|   | Gambar 4.53 Confusion Matrix Naïve Bayes                                                                   | 91   |
|   | Gambar 4.54 Precision Matrix (Column Sum=1) Naïve Bayes                                                    | . 91 |
|   | Gambar 4.54 Recall Matrix (Row Sum=1) Naïve Bayes                                                          | . 92 |
|   | Gambar 4.55 Classification Report Naive Bayes                                                              | 92   |
|   | Gambar 4.56 Confusion Matrix Convolutional Neural Network (CNN)                                            | .93  |
|   | Gambar 4.57 Precision Matrix (Column Sum=1) Convolutional Neural Networ<br>(CNN)                           |      |
|   | Gambar 4.58 Recall Matrix (Row Sum=1) Naive Bayes                                                          |      |
|   | Gambar 4.59 Classification Report Convolutional Neural Network (CNN)                                       | . 95 |

## DAFTAR LAMPIRAN



#### DAFTAR LAMBANG DAN SINGKATAN

CNN Convolutional Neural Network NB Naïve Bayes BBC British Broadcasting Corporation NLP Natural Language Processing DM Data Mining ML Machine Learning DL Deep Learning LSTM Long Short-Term Memory RNN Recurrent Neural Network EDA Exploratory Data Analysis Σ Total nilai α Nilai alpha Π Jumlah kali

## DAFTAR ISTILAH

| Precision | Besaran seberapa akurat prediksi                   |
|-----------|----------------------------------------------------|
| Recal     | Besaran seberapa baik model                        |
| F1-Score  | Rata-rata harmonik dari presisi dan recall         |
| Tokenize  | Memecah teks menjadi kata-kata                     |
| Token     | Kumpulan kata kata                                 |
| Encode    | Proses mengubah token menjadi representasi numerik |
| Vektor    | Representasi numerik hasil dari Encode             |
| Index     | Posisi dari token atau kata tertentu dalam vektor  |

#### INTISARI

Pada era digital ini, klasifikasi berita menjadi hal yang penting dalam mengelola dan menyajikan informasi yang melimpah, terutama dari sumbersumber berita online seperti BBC News. Penelitian ini membandingkan dua metode klasifikasi teks, yaitu *Naīve Bayes* dan *Convolutional Neural Network* (CNN), dalam mengklasifikasikan berita dari BBC News ke dalam lima kategori: bisnis, teknologi, politik, olahraga, dan hiburan. Dataset yang digunakan terdiri dari 2.225 berita yang telah diunduh dari *Kaggle*.

Hasil penelitian menunjukkan bahwa metode CNN memiliki keunggulan dalam hal akurasi, presisi, recall, dan F1-score dibandingkan dengan *Naīve Bayes*. Namun, Naive Bayes tetap relevan untuk kasus-kasus tertentu yang membutuhkan metode yang lebih sederhana dan cepat. Penelitian ini memberikan wawasan tentang kelebihan dan kekurangan dari kedua metode klasifikasi dan diharapkan dapat menjadi referensi dalam pengembangan metode klasifikasi berita di masa depan.

Kata kunci: Klasifikasi Berita, Naïve Bayes, Convolutional Neural Network, BBC News, Machine Learning.

#### ABSTRACT

In this digital era, news classification has become essential in managing and presenting abundant information, particularly from online news sources like BBC News. This study compares two text classification methods, Naive Bayes and Convolutional Neural Network (CNN), in classifying BBC News articles into five categories: business, technology, politics, sports, and entertainment. The dataset used comprises 2,225 articles downloaded from Kaggle.

The results indicate that the CNN method outperforms Naive Bayes in terms of accuracy, precision, recall, and F1-score. However, Naive Bayes remains relevant for specific cases that require a simpler and faster method. This study provides insights into the strengths and weaknesses of both classification methods and is expected to serve as a reference for future news classification method development.

Keyword: News Classification, Naïve Bayes, Convolutional Neural Network, BBC News, Machine Learning.