ANALISIS PERBANDINGAN ALGORITMA EFFICIENTNET DAN YOLOV8 DALAM KLASIFIKASI GAMBAR KENDARAAN BERMOTOR

SKRIPSI

Diajukan untuk memenuhi salah satu syarat mencapai derajat Sarjana Program Studi Informatika

disusun oleh

FAVIAN AFRHEZA FATTAH 20.01.0186

Kepada

FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA 2024

ANALISIS PERBANDINGAN ALGORITMA EFFICIENTNET DAN YOLOV8 DALAM KLASIFIKASI GAMBAR KENDARAAN BERMOTOR

SKRIPSI

untuk memenuhi salah satu syarat mencapai derajat Sarjana Program Studi Informatika

disusun oleh FAVIAN AFRHEZA FATTAH 20.61.0186

Kepada

FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA 2024

HALAMAN PERSETUJUAN

SKRIPSI

ANALISIS PERBANDINGAN ALGORITMA EFFICIENTNET DAN YOLOV8 DALAM KLASIFIKASI GAMBAR KENDARAAN BERMOTOR

yang disusun dan diajukan oleh

FAVIAN AFRHEZA FATTAH

20.61.0186

telah disetujui oleh Dosen Pembimbing Skripsi pada tanggal 27 Juni 2024

Dosen Pembimbing,

Ferian Fauzi Abdulloh, M. Kom.

NIK. 190302276

HALAMAN PENGESAHAN

SKRIPSI

ANALISIS PERBANDINGAN ALGORITMA EFFICIENTNET DAN YOLOV8 DALAM KLASIFIKASI GAMBAR KENDARAAN BERMOTOR

yang disusun dan diajukan oleh

FAVIAN AFRHEZA FATTAH

20.61.0186

Telah dipertahankan di depan Dowan Penguji pada tanggal 27 Juni 2024

Susanan Dewan Penguji

Tanda Tangan

Nama Penguji

Ainul Yaqin, M. Kom. NIK. 190302255

Andrivan Dwi Putra, M. Kom. NIK. 190302270

Ferian Fauzi Abdulloh, M. Kom. NIK. 190302276

> Skripsi ini telah diterima sebagai salah satu persyaratan untuk memperoleh gelar Sarjana Komputer Tanggal 27 Juni 2024

HALAMAN PERNYATAAN KEASLIAN SKRIPSI

Yang bertandatangan di bawah ini,

Nama mahasiswa : Favian Afrheza Fattah NIM : 20.61.0186

Menyatakan bahwa Skripsi dengan judul berikut:

Analisis Perbandingan Algoritma EfficientNet dan YOLOv8 dalam Klasifikasi Gambar Kendaraan Bermotor

Dosen Pembimbing: Ferian Fauzi Abdulloh, M.Kom.

- Karya tulis ini adalah benar-benar ASLI dan BELUM PERNAH diajukan untuk mendapatkan gelar akademik, baik di Universitas AMIKOM Yogyakarta maupun di Perguruan Tinggi lainnya.
- Karya tulis ini merupakan gagasan, rumusan dan penelitian SAYA sendiri, tanpa bantuan pihak lain kecuali arahan dari Dosen Pembimbing.
- Dalam karya tulis ini tidak terdapat karya atau pendapat orang lain, kecuali secara tertulis dengan jelas dicantumkan sebagai acuan dalam naskah dengan disebutkan nama pengarang dan disebutkan dalam Daftar Pustaka pada karya tulis ini.
- Perangkat lunak yang digunakan dalam penelitian ini sepenuhnya menjadi tanggung jawab SAYA, bukan tanggung jawab Universitas AMIKOM Yogyakarta.
- 5. Pernyataan ini SAYA buat dengan sesungguhnya, apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka SAYA bersedia menerima SANKSI AKADEMIK dengan pencabutan gelar yang sudah diperoleh, serta sanksi lainnya sesuai dengan norma yang berlaku di Perguruan Tinggi.

Yogyakarta, 27 Juni 2024

Yang Menyatakan,

N X261717658

Favian Afrheza Fattah

HALAMAN PERSEMBAHAN

Karya ini penulis persembahkan untuk:

- a) Papa dan mama tercinta, atas doa, nasehat, serta semangat terbaik yang telah diberikan hingga skripsi ini berhasil diselesaikan.
- b) Adik, atas segala doa dan dukungan bagi penulis sehingga mampu menyelesaikan studi hingga saat ini.
- c) Keluarga, Sahabat, Teman, serta orang-orang terdekat yang terus mendoakan, menguatkan, dan juga memberi dukungan.

Posisi kalian dalam perjalanan hidup penulis tidak akan pemah terganti oleh siapapun. Terimakasih atas doa dan dukunganya baik moril dan materiil serta kasih sayang yang tidak terhingga, karena mereka penulis dapat bertahan melewati masamasa sulit dalam perjalanan hidup ini.

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT karena berkat Rahmat dan Karunia-Nya penulis dapat menyelesaikan penyusunan skripsi ini. Shalawat serta salam semoga senantiasa terlimpah curahkan kepada Nabi Muhammad SAW, kepada keluarganya, para sahabatnya, hingga kepada umatnya hingga akhir zaman, Amin.

Penulisan skripsi ini diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana pada Program Studi Informatika Fakultas Ilmu Komputer Universitas Amikom Yogyakarta. Judul yang penulis ajukan adalah "Analisis Perbandingan Algoritma EfficientNet dan YOLOv8 dalam Klasifikasi Gambar Kendaraan Bermotor". Dalam penyusunan dan penulisan skripsi ini tidak terlepas dari bantuan, bimbingan, serta dukungan dari berbagai pihak. Oleh karena itu, dalam kesempatan ini penulis dengan senang hati menyampaikan terima kasih kepada yang terhormat:

- Bapak Hanif Al Fatta, S.Kom., M.Kom., Ph.D. selaku Dekan FIK Amikom Yogyakarta atas pemberian fasilitas dan bantuannya untuk memperlancar administrasi tugas akhir.
- b) Ibu Windha Mega Pradnya Dhuhita, M.Kom. selaku Ketua Program Studi Fisika Universitas Negeri Yogyakarta yang telah memberikan izin dan bantuannya untuk memperlancar administrasi tugas akhir.
- c) Bapak Ferian Fauzi Abdulloh, M.Kom. selaku Dosen pembimbing yang telah meluangkan banyak waktu untuk membimbing, saran, masukan, arahan, memberi petunjuk, dan diskusi yang tiada henti sehingga skripsi ini berhasil terselesaikan dengan baik.

d) Dosen Universitas Amikom Yogyakarta, yang telah memberikan kontribusi, baik secara langsung maupun tidak langsung, dalam perjalanan penelitian ini.

Yogyakarta, 27 Juni 2024

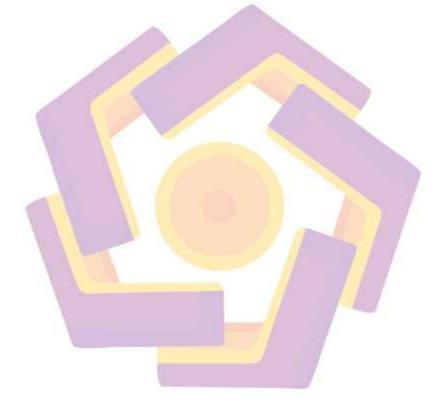
Penulis

Favian Afrheza Fattah

DAFTAR ISI

HALAMAN JUDUL	i	
HALAMAN PERSETUJUANii		
HALAMAN PENGESAHANiii		
HALAMAN PERNYATAAN KEASLIAN SKRIPSI Favian Afrheza Fattah HALAMAN PERSEMBAHAN		
KATA PENGANTAR		
DAFTAR ISI	viii	
DAFTAR TABEL	xii	
DAFTAR GAMBAR	xiii	
DAFTAR LAMPIRAN	xv	
DAFTAR LAMBANG DAN SINGKATAN		
DAFTAR ISTILAH		
INTISARI	xviii	
ABSTRACT		
BAB I PENDAHULUAN	1	
1.1 Latar Belakang		
1.2 Rumusan Masalah		
1.3 Batasan Masalah		
1.4 Tujuan Penelitian		
1.5 Manfaat Penelitian		
1.6 Sistematika Penulisan		
BAB II TINJAUAN PUSTAKA		

1


2.1	Studi Literatur	7
2.2	Dasar Teori	15
2.2	2.1 Kendaraan Bermotor	15
2.2	2.2 Machine Learning	15
2.2	2.3 Deep Learning	15
2.2	2.4 Computer Vision	
2.2	2.5 Python	16
	2.6 Tensorflow	
	2.7 Convolutional Neural Network (CNN)	
	2.8 Epoch	
	2.9 EfficientNet	
	2.10 YOLOv8 (YouOnlyLookOnce)	
1.	and the second	
	2.11 Confusion Matrix	
	2.12 Accuracy	1
	2.13 Precision	
2.2	2.14 Recall	
2.2	2.15 F1-Score	29
BAB II	I METODE PENELITIAN	30
3.1	Objek Penelitian	
3.2	Alur Penelitian	30
3.2	2.1 Memahami Permasalahan dan Menetapkan Tujuan	
3.2	2.2 Mengumpulkan Dataset	
3.2	2.3 Membagi Dataset ke dalam Folder Train, Val, dan Test	
	2.4 Mengelola Missing Data dan Keseimbangan Data	
	2.5 Mengarsipkan Dataset ke dalam Format ZIP	

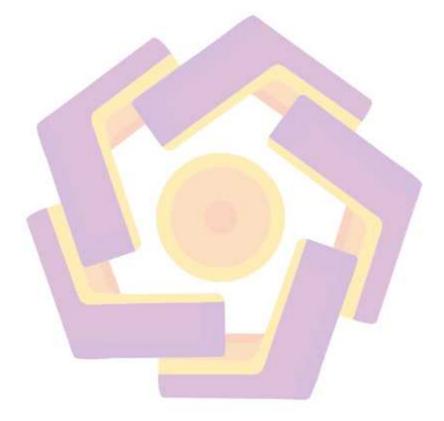
3.2.6 Mengunggah Dataset ke Platform Kaggle	
3.2.7 Installing dan Importing Library yang Diperlukan	33
3.2.8 Load dan Transform Data ke dalam Dataframe (EfficientNet)	34
3.2.9 Data Preprocessing (EfficientNet)	34
3.2.10 Pelatihan Model (EfficientNet)	
3.2.11 Test Model (EfficientNet)	34
3.2.12 Memanggil Dataset ke dalam Variabel (YOLOv8)	34
3.2.13 Load Model (YOLOv8)	35
3.2.14 Train Model (YOLOv8)	35
3.2.15 Test Model (YOLOv8)	35
3.2.16 Evaluasi Model dan Bandingkan Hasilnya dari Kedua Model	
3.3 Alat dan Bahan	
BAB IV HASIL DAN PEMBAHASAN	
4.1 Persiapan Notebook dan Dataset	
4.2 Pemodelan	40
4.2.1 Installing dan Importing Library	40
4.2.2 Membuat Helper Function (EffcientNet)	
4.2.3 Load dan Transform Data (EffcientNet)	43
4.2.4 Meletakkan Dataset kedalam Suatu Dataframe (EffcientNet)	
4.2.5 Visualisasi Gambar dari Dataset (EffcientNet)	45
4.2.6 Data Preprocessing (EffcientNet)	<mark>4</mark> 6
4.2.7 Pelatihan Model (EffcientNet)	
4.2.8 Visualisasi Kurva Loss dan Akurasi (EffcientNet)	53
4.2.9 Membuat Prediksi dari Test Data (EffcientNet)	54
4.2.10 Membuat Confusion Matrix (EffcientNet)	

4.2.11 Membuat Laporan dari Hasil Evaluasi (EffcientNet)	
4.2.12 Memanggil dataset (YOLOv8)	
4.2.13 Load Model (YOLOv8)	
4.2.14 Train Model (YOLOv8)	60
4.2.15 Visualisasi Kurva Loss (YOLOv8)	61
4.2.16 Membuat Prediksi dari test data (YOLOv8)	63
4.2.17 Membuat Laporan dari Hasil Evaluasi (YOLOv8)	64
4.2.18 Penggabungan Visualisasi Kurva Loss dan Akurasi	67
BAB V PENUTUP	69
5.1 Kesimpulan	69
5.2 Saran	69
REFERENSI	
LAMPIRAN	

DAFTAR TABEL

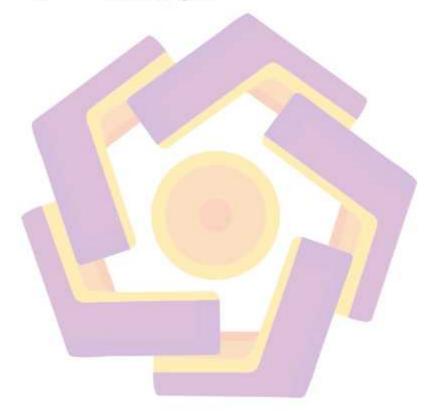
Tabel 2. 1 Tabel Perbandingan Akurasi, Parameter, dll	20
Tabel 2. 2 Arsitektur pada EFFICIENTNET-B0. MBCONV: MOBILE INVERTED BOTTLENECK	
CONVOLUTION	21
Tabel 3. 1 Perangkat Keras dan Spesifikasinya	
Tabel 3. 2 Perangkat Lunak dan Spesifikasinya	36

DAFTAR GAMBAR


Gambar 2. 1 Contoh Convolution Layer	
Gambar 2. 2 Contoh Proses Keseluruhan CNN	
Gambar 2. 3 Model Scaling	
Gambar 2. 4 Perbandingan Ukuran dan Latency YOLO	
Gambar 2. 5 Arsitektur YOLOv8	
Gambar 2. 6 konsep baru YOLOv8	
Gambar 2. 7 Confusion Matrix	
Gambar 2. 8 Contoh Multiclass Confusion Matrix	
Gambar 2. 9 Contoh Multiclass Confusion Matrix dengan Keterangan	
Gambar 3. 1 Alur Penelitian	
Gambar 3. 2 Struktur Dataset	
Gambar 3. 3 Struktur data train	
Gambar 3. 4 Dataset Setelah Berhasil Diunggah di Kaggle	
Gambar 3. 5 Dataset Dimasukkan ke dalam Notebook	
Gambar 3. 6 Menambahkan Accelerator ke dalam Notebook	
Gambar 4. 1 Kode untuk Menginstall Library	
Gambar 4. 2 Kode untuk Import Library	
Gambar 4. 3 Kode untuk Membuat Helper Function	
Gambar 4. 4 Kode untuk Inisiasi Batch dan Target Size	
Gambar 4. 5 Kode untuk Inisiasi Dataset	
Gombar 4. 6 Kode untuk Memasukkan Dataset ke dalam dataframe	
Gambar 4. 7 Kode Distrubusi Dataset	
Gambar 4. 8 Distribusi Dataset	
Gambar 4. 9 Kode untuk Menampilkan Dataset Secara Acak	
Gambar 4. 10 Hasil dari dataset yang diambil secara acak	
Gambar 4. 11 Kode Untuk Membagi Dataset	
Gambar 4. 12 Kode untuk Data Preprocessing Menggunakan Image Data Generator	
Gambar 4. 13 Kode untuk konversi dataframe menjadi batch data	
Gambar 4. 14 Jumlah Data setelah dikonversi ke batch data	
Gambar 4. 15 Data Augmentation	
Gambar 4. 16 Kode untuk Load Pretrained Model	
Gambar 4. 17 Kode Untuk Membuat EarlyStopping	
Gambar 4. 18 Kode untuk Pelatihan Model	

1

Gambar 4. 19 Tampilan Langkah Epoch ketika Pelatihan Model EfficientNet	
Gambar 4. 20 Kode untuk Visualisasi Kurva Kerugian dan Akurasi	
Gambar 4. 21 Kurva Kerugian dan Akurasi	
Gambar 4. 22 Kode untuk Memprediksi Label	
Gambar 4. 23 Kode untuk Menampilkan Prediksi dari Gambar Secara Acak	54
Gambar 4. 24 Hasil Prediksi dari Gambar pada Data Tes Secora Acak	
Gambar 4. 25 Kode untuk Mendefinisi Fungsi Confusion Matrix	
Gambar 4. 26 Kode untuk Memanggil Confusion Matrix	
Gambar 4. 27 Confusion Matrix Model EfficientNet	,58
Gambar 4. 28 Laporan Hasil Evaluasi Model EfficientNet	58
Gambar 4. 29 Laporan Hasil Evaluasi Model EfficientNet (Dataframe)	
Gambar 4. 30 Kode untuk Memanggil Dataset	
Gambar 4. 31 Kode untuk Memanggil Pretrained Model	
Gambar 4. 32 Kode Untuk Pelatihan Model YOLOv8	
Gambar 4. 33 Tampilan Langkah Epoch ketika Pelatihan Model YOLOv8	60
Gambar 4. 34 Tampilan Langkah Lanjutan Epoch ketika Pelatihan Model YOLOv8	
Gambar 4. 35 Kode untuk Mendifinisikan file resultIs ke dalam Variabel	61
Gambar 4. 36 Kode untuk Visualisasi Kurva Kerugian dan Akurasi	62
Gambar 4. 37 Kurva Kerugian dan Akurasi Model YOLOv8	62
Gambar 4. 38 Load Model yang Telah Dilatih	63
Gambar 4. 39 Memprediksi Model dengan Data Tes	
Gambar 4. 40 Kode Untuk Melihat Hasil Prediksi Model	63
Gambar 4. 41 Kode untuk Memanggil Hasil Prediksi dari Data Validasi	64
Gambar 4, 42 Tampilan Hasil Prediksi dari Data Validasi	64
Gambar 4. 43 Kode untuk Menampilkan Confusion Matrix	64
Gambar 4. 44 Confusion Matrix Model YOLOv8	65
Gambar 4. 45 Kode untuk Menompilkan Laporan Hasil Evaluasi Model YOLOv8	
Gambar 4. 46 Kode untuk Menampilkan Laporan Hasil Evaluasi Model YOLOv8 (dataframe)	
Gambar 4. 47 Kode Visualisasi Gabungan	
Gambar 4, 48 Visualisasi Gabungan EfficientNet dan YOLOv8	68


DAFTAR LAMPIRAN

Lampiran 1 Data gambar bus	.75
Lampiran 2 Data Gambar Mobil	.75
Lampiran 3 Data Gambar Motor	.76
Lampiran <mark>4</mark> Data gambar Truk	.76

DAFTAR LAMBANG DAN SINGKATAN

- CNN Convolutional Neural Network
- YOLO You Only Look Once
- AI Artificial Intelligence

DAFTAR ISTILAH

Px (pixel)	unit pengukuran terkecil pada layar digital	
Persen	satuan yang digunakan untuk menyatakan bagian dari suatu	
	keseluruhan dalam bentuk per seratus.	
Data Train	sekumpulan data yang digunakan untuk melatih model.	
Data Validation	sekumpulan data yang digunakan untuk mengevaluasi	
	kinerja model selama proses pelatihan.	
Data Test	sekumpulan data yang digunakan untuk mengevaluasi	
	kinerja akhir model machine learning setelah model selesai	
	dilatih.	
Arsitektur	desain dan struktur suatu model.	
Open source	model pengembangan perangkat lunak di mana kode	
	sumbernya tersedia untuk umum	

INTISARI

Dewasa ini, Kecerdasan buatan menjadi perbincangan hangat di internet. Hampir semua sektor dapat melibatkan kecerdasan buatan. Bahkan banyak perusahaan yang sedang berlomba-lomba untuk mengembangkan kecerdasan buatan dalam sistem atau produk mereka. Ataupun misalnya pemerintah yang mengembangkan sistem tilang elektronik, dimana sistem dapat membaca plat nomor kendaraan pelanggar lalu lintas secara otomatis. Dalam penelitian ini, peneliti akan membahas salah satu bidang dari kecerdasan buatan yaitu computer vision. Penelitaan ini akan membandingkan performa algoritma EfficientNet dan YOLOv8 dalam melakukan klasifikasi kendaraan bermotor, Penilaian performa dalam hal ini adalah akurasi, presisi, recall, dan F1 Score, digunakan untuk menilai efektivitas EfficientNet dan YOLOv8 dalam menangani tugas klasifikasi gambar. Pengguanan algoritma EfficientNet dan YOLOv8 dalam penelitian ini dikarenakan kepopuleran kedua algoritma tersebut dalam computer vision. Sebagai perbandingan pembedanya, algoritma EfficientNet merupakan algortima yang direkomendasikan oleh tensorflow untuk melakukan klasifikasi sedangkan YOLOv8 merupakan algoritma populer dalam computer vision dan dapat melakukan tugas klasifikasi. Hasil akhir dari penelitian ini adalah nilai validasi akurasi lebih baik EfficientNet, sedangkan training akurasi lebih baik YOLOv8. Untuk training loss lebih baik YOLOv8, sedangkan validasi loss lebih baik pada EfficientNet. Nilai evaluasi presisi, recal, dan F1-Score secara keseluruhan lebih baik pada EfficientNet dengan performa keduanya rata-rata diatas 90%. Hasil penelitian tersebut diharapkan dapat memberikan wawasan berharga mengenai kelebihan dan kekurangan masingmasing algoritma, membantu para peneliti dan praktisi dalam memilih pendekatan yang paling sesuai untuk klasifikasi gambar dalam konteks aplikasi otomotif.

Kata kunci: kecerdasan buatan, klasfikasi, EfficientNet, YOLOv8, akurasi, presisi,

recall, F1-score

ABSTRACT

Artificial intelligence has become a hot topic on the internet today. Almost all sectors can involve artificial intelligence. Many companies are even competing to develop artificial intelligence in their systems or products. For example, the government is developing an electronic ticketing system, where the system can automatically read the license plates of traffic violators. This research will discuss one of the fields of artificial intelligence, namely computer vision. This study will compare the performance of the EfficientNet and YOLOv8 algorithms in classifying motor vehicles. Performance assessment in this case includes accuracy, precision, recall, and F1 Score, which are used to evaluate the effectiveness of EfficientNet and YOLOv8 in handling image classification tasks. The use of EfficientNet and YOLOv8 algorithms in this research is due to their popularity in computer vision. As a differentiating comparison, EfficientNet is an algorithm recommended by TensorFlow for classification, while YOLOv8 is a popular algorithm in computer vision capable of performing classification tasks. The final results of this study show that EfficientNet has better validation accuracy, while YOLOv8 has better training accuracy. For training loss, YOLOv8 performs better, whereas validation loss is better with EfficientNet, Overall, the evaluation metrics of precision, recall, and F1-Score are higher with EfficientNet, with both algorithms. averaging above 90% performance. These findings are expected to provide valuable insights into the strengths and weaknesses of each algorithm, assisting researchers and practitioners in selecting the most appropriate approach for image classification in the context of automotive applications.

Keyword: Artificial intelligence, classification, EfficientNet, YOLOv8, accuracy,

precision, recall, F1-score