OPTIMASI ALGORITMA SVM PADA DATA SENTIMEN PENGGUNA TWITTER TERHADAP MENTERI KEUANGAN SRI MULYANI

SKRIPSI

Diajukan untuk memenuhi salah satu syarat mencapai derajat Sarjana

Program Studi Informatika

disusun oleh

SHULUN DWISIWI PALAGUNA 19.11.3080

Kepada

FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA

2024

OPTIMASI ALGORITMA SVM PADA DATA SENTIMEN PENGGUNA TWITTER TERHADAP MENTERI KEUANGAN SRI MULYANI

SKRIPSI

untuk memenuhi salah satu syarat mencapai derajat Sarjana Program Studi Informatika

disusun oleh

Shulun Dwisiwi Palaguna 19.11,3080

Kepada

FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA 2024

î

HALAMAN PERSETUJUAN

SKRIPSI

OPTIMASI AL GORITMA SVM PADA DATA SENTIMEN PENGGUNA TWITTER TERHADAP MENTERI KEU ANGAN SRI MULYANI

yang distoran dan diajukan oleh

Shulun Dwistwi Palaguna-

19.11.3080

telah disetaran oleh Doren Pembanhang Skrapopada tanggal 23 Jamars 2024

Doven Pentimbing.

Anna Hata, M.Kom NIK. 190302290

HALAMAN PENGESAHAN

SKRIPSI

OPTIMASI ALGORITMA SVM PADA DATA SENTIMEN PENGGUNA TWITTER TERHADAF MENTEREKERANGAN SRI MULYANI

yang disusan dan diajukan oleh

Shulun Dwisiwi Palaguna

19.11.3880

Telah dipersahankan di depar Dewan Pengiu pada tanggal 23 Januari 2024

Suman Dewas Penguji

Tanda Tapgan

Auggit Doi Hartanio, M.Kum NIK, 196302163

Andriyan Dai Patra, M.Kom NIK, 190302270

Anna Baita, M.Koot NIK, 190302296

Nama Penguji

Skripsi ini telah diterimi sebagai salah satu persyamitan untuk memperoleh gelar Sariana Komputer Timggal 23 Januari 2024

BEKAN FAKULTAS ILMU KOMPUTER

Hanif Al Fatta,S.Kom., M.Kom., Ph.D., NIK, 190302096

HALAMAN PERNYATAAN KEASLIAN SKRIPSI

Yang bertandatangan di huwah ini.

Nama mahasiwa : Shulun Dwisiwi Palaguna NIM : 19.11.3080

Meny staken nation Skriges dennas judiil berikut:

OPTIMASUAL GORITMA SVM PADA DATA SENTIMEN PENGGUNA TWITTER TERHADAP MENTERI KEPANGAN SBI MULYANI

Dusan Pernhumbung : Aona Basta, M. Korn

- Karya tuta nu adalah teran-teran ASLI dan BELUM PERNAH diapa as Umuk mendapatkan gelar akademik, baik di Umversitaa AMIKOM Vogyakarta mauputa di Pernaruan Tanggi lainnya.
 - Karya tulis ini merupakan gagisan, rumuan dan pendlisan SAYA sendiri, targa bantuan pilak lain kecadi arahari dari Dosen Pentrimplong
- 3 Datam karya nilo ini talak initiapat karya atau pendapat uning fain, kuwadi awara tertulia dengan jelas dacamumkan atbugas acam datam na kart dengan dakadukan namu pengarang dan disebutkan datam Dettar Pustaka pada kerya nulo ini.
- 4 Perseghat hank yang digutakan dalam penditian ini sependanya menjadi ininggong jawab SAYA, bakan tangang jawab Universitas AMIKOM Yogyakarta.
- ⁵ Purnyataan mi SAYA buar debgan senanggolmya, apolida di kernadian bur nerdapat penyangangan dan kendakberaran dalam pernyataan mi, maka SAYA Seriedia menerima SANKSI AKADEMIK dengan penuabutan gilar yang audah diperoleh, serta sankai lainnya senadi dengan menta yang bertasa di Pergunaan Tinggi.

Vogyakarta, 23 Januari 2024

Vang Menyatakan:

ALL DE LE DE

Stuhus Distaine) Paloguna

HALAMAN PERSEMBAHAN

Alhamdulillah puji syukur penulis ucapkan kepada Allah SWT atas terselesaikannya skripsi ini berkat dukungan dan doa orang tua. Oleh karena itu, skripsi ini penulis persembahkan kepada kedua orang tua, saudara, dosen pembimbing, dosen penguji, teman-teman, dan Universitas Amikom khususnya Fakultas Ilmu Komputer.

KATA PENGANTAR

Puji syukur kehadirat Allah SWT, yang senantiasa melimpahkan rahmat, hidayah, dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi dengan judul "Optimasi Algoritma Svm Pada Data Sentimen Pengguna Twitter Terhadap Menteri Keuangan Sri Mulyani". Penulis mengucapkan terima kasih kepada pihak yang terlibat langsung maupun tidak langsung atas selesainya skripsi ini:

- Kepada kedua orang tua [Sumarno, S.Pd dan Karminah, S.Pd.] yang selalu memberikan dukungan, cinta, dan doa restu dalam setiap langkah penyusunan skripsi. Dalam setiap titik keberhasilan penulis, doa dan kasih sayang kalian menjadi pendorong utama.
- Kepada Kakak [Shaestu Abida Bhirawasiwi, S.Tr.Stat], yang telah membantu memberikan semangat dalam mengerjakan skirpsi ini.
- Kepada Dosen Pembimbing, [Anna Baita, M.Kom], yang dengan penuh kesabaran dan arahan memberikan bimbingan serta masukan yang berharga. Bimbingan tersebut menjadi landasan kuat dalam menyelesaikan skripsi ini.
- Kepada seluruh teman-teman. Terima kasih atas dukungan, semangat, dan bantuan selama perjalanan penulisan skripsi ini.

Yogyakarta, 23 Januari 2024 Penulis

DAFTAR ISI

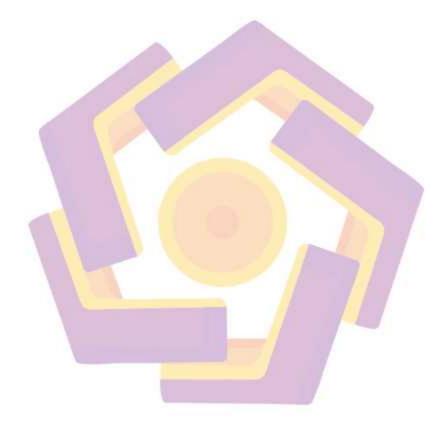
HALAMAN PERSETUJUAN	i
HALAMAN PENGESAHAN	ii
HALAMAN PERNYATAAN KEASLIAN SKRIPSI	
HALAMAN PERSEMBAHAN	iv
KATA PENGANTAR	vi
DAFTAR ISI	vii
DAFTAR TABEL	
DAFTAR GAMBAR	x
DAFTAR LAMPIRAN	
DAFTAR LAMBANG DAN SINGKATAN	xii
DAFTAR ISTILAH	xiii
INTISARI	xiv
ABSTRACT	
BABI PENDAHULUAN	1
1.1 Latar Belakang	
1.2 Rumusan Masalah	
1.3 Batasan Masalah	
1.4 Tujuan Penelitian	
1.5 Manfaat Penelitian	
1.6 Sistematika Penulisan	
BAB II TINJAUAN PUSTAKA	5
2.1 Studi Literatur	5
2.2 Dasar Teori	
2.2.1 Text Mining	12
2.2.1 Analisis Sentimen	12
2.2.2 Preprocessing	12
2.2.3 SMOTE	

1

2.2.4	Term Frequency-Inverse Document Frequency (TF-IDF)	
2.2.5	Klasifikasi	
2.2.6	Algoritma Support Vector Machine (SVM)	15
2.2.7	Evaluasi	17
BAB III MI	ETODE PENELITIAN	
3.1 Ob	jek Penelitian	
3.2 Al	ur Penelitian	
3.2.1	Pengumpulan Data	21
3.2.2	Pre-processing Data	22
3.2.3	Pembobotan TF-IDF	29
3.2.4	Visualisasi Data	
3.2.5	Split Data	
3.2.6	Oversampling SMOTE	
3.2.7	SVM	
3.2,8	Evaluasi	
3.3 Al	at dan Bahan	
BAB IV H/	ASIL DAN PEMBAHASAN	
4.1 Ha	sil dan Pembahasan	
4.9 Ev	aluasi	41
BAB V PE	NUTUP	
5.1 Ke	simpulan	45
5.2 Sa	ran	45
REFERENS	51	
LAMPIRA	N	

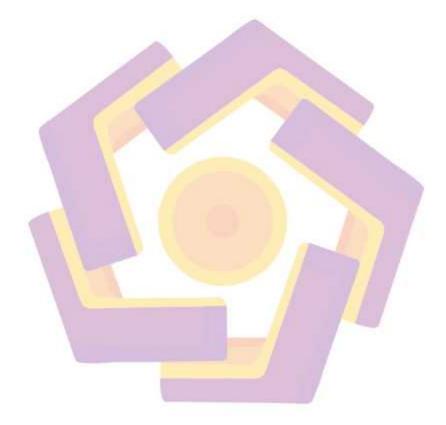
1

DAFTAR TABEL


Tabel 2.1. Perbandingan metode	10
Tabel 2.1. Fungsi Kernel	18
Tabel 2.2 Confusion Matrix	19
Tabel 3.2 Pengumpulan Data	23
Tabel 3.3 Data Cleansing dan Case Folding	24
Tabel 3.4 Normalization	25
Tabel 3.5 Labelling	26
Tabel 3.6 Tokenization	27
Tabel 3.7 Stopwords Removal	28
Tabel 3.8 Stemming	30
Tabel 3.9 Pembobotan TF-IDF	31
Tabel 3.10 Sentimen Positif	33
Tabel 3.11 Sentimen Negatif	34
Tabel 3.12 Sentimen Netral	35
Tabel 3.13 Pembagian Data	35
Tabel 4.1 Nilai Default SVM	38
Tabel 4.2 Tabel Hasil Data Test Tanpa Hyperparameter	39
Tabel 4.2 Tabel Parameter Hyperparameter	40
Tabel 4.3 Tabel Hasil Data Test Hyperparameter	40
Tabel 4.4 Tabel Evaluasi Confusion	41
Tabel 4.14 Tabel Evaluasi Kurva ROC-AUC	42
Tabel 4.15 Tabel Evaluasi kurva Precision-Recall	43

DAFTAR GAMBAR

Gambar 2.1 Gambar konsep dasar klasifikasi SVM	16
Gambar 3.1 Alur Penelitian	22
Gambar 3.2 Visualisasi Sentimen	32
Gambar 3.3 Visualisasi Sentimen Positif	32
Gambar 3.4 Visualisasi Sentimen Negatif	33
Gambar 3.5 Visualisasi Sentimen Netral	34
Gambar 3.6 Sebelum dan Sesudah Oversampling	36
Gambar 4.1 Kurva ROC-AUC Tanpa Hyperparameter	42
Gambar 4.2 Kurva ROC-AUC Hyperparameter	43
Gambar 4.3 Kurva Precision-Recall Tanpa Hyperparameter	44
Gambar 4.4 Kurva Precision-Recall Hyperparameter	44


DAFTAR LAMPIRAN

DAFTAR LAMBANG DAN SINGKATAN

SVM RBF	Support Vector Machine Radias Basis Function
SMOTE	Synthetic Minority Over-sampling Technique
TF-IDF	Term Frequency-Inverse Document Frequency
$tf_{i,j}$	Banyaknya kata-i pada dokumen ke-j
Ν	Total dokumen
dfi	Banyaknya dokumen yang mengandung kata-i
b	Bias
w	Vektor Bobot
x _i	Vektor fitur untuk sampel i
У	Label kelas untuk sampel /

DAFTAR ISTILAH

INTISARI

Analisis sentimen merupakan bagian dari text mining yang bertujuan untuk mengidentifikasi opini, emosi, dan sikap dalam bentuk teks. Twitter salah satu media sosial yang digunakan sebagai analisis sentimen. Menteri Keuangan Sri Mulyani menjadi trending topic di Twitter karena permasalahan di lingkungan Kementerian Keuangan. Hal ini menjadikan pengguna twitter yang membahas tentang Kementerian Keuangan, Data Twitter tersebut kemudian digunakan sebagai dokumen untuk analisis sentimen. Dengan berkembangnya teknologi saat ini analisis sentimen dilakukan menggunakan machine learning dapat membantu dengan konsisten dan efisien. Support Vector Machine (SVM) merupakan salah satu metode klasifikasi machine learning (supervised learning) untuk analisis sentimen. Penelitian ini bertujuan untuk mengetahui bagaimana performa algoritma SVM dalam analisis sentiment pengguna twitter terhadap Menteri Keuangan Sri Mulyani. Data yang didapatkan dari Twitter sejumlah 1651 tweets dan data dibagi menjadi dua antara data training 80% sebanyak 1321 data dan data testing 20% sebanyak 331 data. Data tersebut kemudian di klasifikasikan menggunakan algoritma SVM. Hasil dari penelitian ini menunjukan algoritma Support Vector Machine mendapat parameter terbaik dengan kernel=RBF, C=10, dan Gamma =1 mendapat model dengan nilai terbaik Accuracy 71%, Precision 79%, Recall 66%, F1-Score 72%.

Kata kunci: sentimen, analisis, Support Vector Machine, Sri Mulyani, Twitter

ABSTRACT

Sentiment analysis is part of text mining which aims to identify opinions, emotions and attitudes in text form. Twitter is one of the social media used for sentiment analysis. Minister of Finance Sri Mulyani became a trending topic on Twitter because of problems within the Ministry of Finance. This makes Twitter users. discuss the Ministry of Finance. The Twitter data is then used as a document for sentiment analysis. With the development of current technology, sentiment analysis carried out using machine learning can help consistently and efficiently. Support Vector Machine (SVM) is a machine learning (supervised learning) classification method for sentiment analysis. This research aims to find out how the SVM algorithm performs in analyzing Twitter user sentiment towards the Minister of Finance Sri Mulyani. The data obtained from Twitter was 1651 tweets and the data was divided into two, 80% training data with 1321 data and 20% testing data with 331 data. The data is then classified using the SVM algorithm. The results of this research show that the Support Vector Machine algorithm got the best parameters with kernel = RBF, C = 10, and Gamma = 1, got a model with the best values of Accuracy 71%, Precision 79%, Recall 66%, F1-Score 72%,

Keywords : sentiment analysis, Support Vector Machine, Sri Mulyani, Twitter