IMPLEMENTASI BLEND SHAPE DALAM PROSES FACIAL RIGGING ANIMASI 3 DIMENSI "ADA MADA"

NON REGULER SKRIPSI

(Magang Artis)

Diajukan untuk memenuhi salah satu syarat mencapai derajat Sarjana Program Studi Teknologi Informasi

disusun oleh PAMUJI EKO MEIYANTO 20.82.0931

Kepada

FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA

IMPLEMENTASI BLEND SHAPE DALAM PROSES FACIAL RIGGING ANIMASI 3 DIMENSI "ADA MADA"

NON REGULER SKRIPSI

(Magang Artis)

untuk memenuhi salah satu syarat mencapai derajat Sarjana Program Studi Teknologi Informasi

disusun oleh

PAMUJI EKO MEIYANTO

20.82.0931

Kepada

FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA

HALAMAN PERSETUJUAN

SKRIPSI

IMPLEMENTASI BLEND SHAPE DALAM PROSES FACIAL RIGGING ANIMASI 3 DIMENSI "ADA MADA"

yang disusun dan diajukan oleh

PAMUJI EKO MEIYANTO

20.82.0931

telah disetujui oleh Dosen Pembimbing Skripsi pada tanggal 22 Januari 2024

Dosen Pembimbing,

Agus Purwanto NIK. 190302229

HALAMAN PENGESAHAN

SKRIPSI

IMPLEMENTASI BLEND SHAPE DALAM PROSES FACIAL RIGGING ANIMASI 3 DIMENSI "ADA MADA"

yang disusun dan diajukan oleh

PAMUJI EKO MEIYANTO

20.82.0931

Telah dipertahankan di depan Dewan Penguji pada tanggal 22 Januari 2024

Susunan Dewan Penguji

Nama Penguji

Tanda Tangan

Bayu Setiaji, M.Kom NIK. 190302261

Dhimas Adi Satria, S.Kom., M.Kom NIK. 190302427

Agus Purwanto, M.Kom NIK. 190302229

> Skripsi ini telah diterima sebagai salah satu persyaratan untuk memperoleh gelar Sarjana Komputer Tanggal 22 Januari 2024

DEKAN FAKULTAS ILMU KOMPUTER

Hanif Al Fatta, S.Kom., M.Kom., Ph.D. NIK. 190302096

HALAMAN PERNYATAAN KEASLIAN SKRIPSI

Yang bertandatangan di bawah ini,

Nama mahasiswa: Pamuji Eko MeiyantoNIM: 20.82.0931

Menyatakan bahwa Skripsi dengan judul berikut:

IMPLEMENTASI BLEND SHAPE DALAM PROSES FACIAL RIGGING

ANIMASI 3 DIMENSI "ADA MADA"

Dosen Pembimbing : Agus Purwanto, M.Kom.

1. Karya tulis ini adalah benar-benar ASLI dan BELUM PERNAH diajukan untuk mendapatkan gelar akademik, baik di Universitas AMIKOM Yogyakarta maupun di Perguruan Tinggi lainnya.

- 2. Karya tulis ini merupakan gagasan, rumusan dan penelitian SAYA sendiri, tanpa bantuan pihak lain kecuali arahan dari Dosen Pembimbing.
- 3. Dalam karya tulis ini tidak terdapat karya atau pendapat orang lain, kecuali secara tertulis dengan jelas dicantumkan sebagai acuan dalam naskah dengan disebutkan nama pengarang dan disebutkan dalam Daftar Pustaka pada karya tulis ini.
- 4. Perangkat lunak yang digunakan dalam penelitian ini sepenuhnya menjadi tanggung jawab SAYA, bukan tanggung jawab Universitas AMIKOM Yogyakarta.
- 5. Pernyataan ini SAYA buat dengan sesungguhnya, apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka SAYA bersedia menerima SANKSI AKADEMIK dengan pencabutan gelar yang sudah diperoleh, serta sanksi lainnya sesuai dengan norma yang berlaku di Perguruan Tinggi.

Yogyakarta, 22 Januari 2024

Yang Menyatakan,

Pamuji Eko Meiyanto

HALAMAN PERSEMBAHAN

Dengan tulus dan penuh rasa syukur, penulis ingin menyampaikan persembahan kepada berbagai pihak yang telah memberikan kontribusi dan dukungannya dalam penulisan skripsi ini. Oleh karena itu dengan bangga saya ucapkan rasa terimakasih kepada:

- Allah SWT, atas rahmat dan hidayah-nya yang telah memberikan kemudahan serta kelancaran sehingga penulis dapat menyelesaikan skripsi ini.
- 2. Keluarga tercinta. Kepada Bapak Kusnadi dan Ibu Tri Suhartini yang telah memberikan segala dukungan dalam bentuk kasih sayang, saran, motivasi sepanjang pembuatan skripsi ini.
- 3. Tim Namona Studio atas pengalamannya di IP bootcamp BDI Denpasar.
- 4. Teman-teman yang suportif yang sudah membangkitkan semangat dalam menyelesaikan skripsi ini dengan baik

KATA PENGANTAR

Puji syukur atas hadirat Allah SWT yang telah memberikan rahmat, kasih sayang, serta kesempatan, sehingga penulis dapat menyelesaikan skripsi dengan judul Implementasi Blend Shape Dalam Proses Facial Rigging Animasi 3 Dimensi "Ada Mada"

Penyusunan skripsi ini bertujuan untuk menyelesaikan salah satu syarat studi dan kelulusan sebelum memperoleh gelar sarjana (strata satu) di Universitas Amikom Yogyakarta. Penyusunan skripsi ini juga tidak terlepas dari berbagai pihak yang telah memberikan bantuan baik secara langsung maupun tidak langsung.Penulis menyampaikan terima kasih kepada:

- Bapak Prof. Dr. M. Suyanto, M.M., selaku Rektor Universitas Amikom Yogyakarta.
- Bapak Hanif Al Fatta, S.Kom., M.Kom., Ph.D. selaku Dekan Fakultas Ilmu Komputer Unversitas Amikom Yogyakarta.
- 3. Bapak Agus Purwanto, M.Kom., selaku Ketua Program Studi Teknologi Informasi Universitas Amikom Yogyakarta, serta dosen pembimbing skripsi yang telah memberikan bimbingan dan arahan kepada penulis sehingga skripsi ini dapat terlaksana dengan baik.
- 4. Segenap Dosen dan Civitas Akademika Universitas Amikom Yogyakarta yang telah memberikan ilmu dan pengalaman kepada penulis selama menajalani perkuliahan.
- 5. Orang tua dan seluruh anggota keluarga yang selalu memberikan motivasi kepada penulis.
- 6. Teman-teman dekat yang telah memberikan dukungan dan semangat kepada penulis.
- Rekan-rekan mahasiswa jurusan Teknologi Informasi Universitas Amikom Yogyakarta angkatan 2020.
- 8. Pihak-pihak yang tidak dapat penulis sebut satu per satu yang memberi dorongan dan doa, sehingga skripsi ini dapat terselesaikan.

DAFTAR ISI

HALAMAN JUDUL i		
HALAMAN PERSETUJUANii		
HALAMAN PENGESAHANiii		
HALAMAN PERNYATAAN KEASLIAN SKRIPSI iv		
HALAMAN PERSEMBAHANv		
KATA PENGANTAR vi		
DAFTAR ISI		
DAFTAR TABELx		
DAFTAR GAMBAR xi		
DAFTAR LAMPIRAN xvii		
DAFTAR LAM <mark>B</mark> ANG DAN SINGKATAN xviii		
DAFTAR ISTILAH xix		
INTISARIxx		
ABSTRACT xxi		
BAB I PENDAHULUAN		
1.1 Latar Belakang1		
1.2 Rumusan Masalah2		
1.3 Batasan Masalah2		
1.4 Maksud dan Tujuan Penelitian		
BAB II LANDASAN TEORI		
2.1 Teori Khusus		
2.1.1 Pengertian Rigging		
2.1.2 Software Autodesk Maya4		
2.1.3 Pengertian Blend Shape4		
2.1.4 Pengertian Topologi5		
2.1.5 Penerapan IK		

2.1.6	6 Penerapan FK	5
2.1.7	7 Pengertian Joint / Bone	6
2.1.8	8 Weight Painting/Skinning	7
2.1.9	9 Pengertian Channel Box	7
2.1.1	10 Attribute Editor	8
2.1.1	11 Pengertian Animasi 3D	8
2.2 H	Referensi Karakter 3D	9
2.3 A	Analisis Kebutuhan Sistem	12
2.3.1	1 Analisis Kebutuhan Fungsional	12
2.3.2	2 Analisis Kebutuhan Non Fungsional	12
2.4	Asp <mark>ek</mark> Produksi	13
2.4.1	1 Aspek Kreatif	14
2.4.2	2 As <mark>pe</mark> k Tek <mark>nis</mark>	16
<mark>2.</mark> 5 I	Pra Produksi	21
BA <mark>B III</mark> I	HASIL DAN PE <mark>MBAHASAN</mark>	26
3.1 I	Proses Penerapan Produksi	26
3.1 <mark>.1</mark>	1 Membuat Kelopak Mata Kanan dan Kiri	26
3.1.2	2 Membuat Alis Kanan dan Kiri	34
3.1.3	3 Membuat Mata Berkedip	42
3.1.4	4 Membuat Ekspresi Marah	49
3.1.5	5 Membuat Ekspresi Sedih	56
3.1.6	6 Membuat Ekspresi Takut	63
3.1.7	7 Membuat Ekspresi Terkejut	70
3.1.8	8 Membuat Pupil Mata Kanan dan Kiri	77
3.1.9	9 Membuat Controller Wajah	98
3.2 H	Evaluasi	100

3.2.1 Penilaian Hasil	
3.2.2 Penilaian Skala Likert	
3.2.2.1 Perhitungan Kuesioner Ahli	
BAB IV PENUTUP	107
4.1 Kesimpulan	107
4.2 Saran	
REFERENSI	109
LAMPIRAN	110
Lampiran 1 Sertifikat Kompetensi	110
Lampiran 2 Sertifikat IP BOOT CAMP	112
Lampiran 3 Pengantar Magang dan Kontrak Magang	113
Lampir <mark>an 4</mark> Hasil Evaluasi Magang	114
Lampiran 5 Sertifikat Peserta BECC (Bhayangkara Enterpreneurshi	p Concept
Competition)	
Lampiran 6 <mark>N</mark> askah <mark>Film Animasi "Ada Mada</mark> "	
Lampiran 7 Storyboard Animasi "Ada Mada"	
Lampiran 8 Uji Kelayakan Cerita Oleh Supervisor MSV	
Lampiran 9 Hasil Penilaian dari ahli 3D	
Lampiran 10 Link Animatic Film Animasi "Ada Mada"	
Lampiran 11 Link Karya Film Animasi "Ada Mada"	

DAFTAR TABEL

Tabel 2.4. 1 Tabel Aspek Kreatif	14
Tabel 2.4. 2 Tabel Aspek Teknis	16
Tabel 3.2. 1 Perbandingan Kebutuhan Fungsional dan Hasil Akhir	100
Tabel 3.2. 2 Tabel Hasil Kuesioner	104
Tabel 3.2. 3 Bobot Nilai	105
Tabel 3.2. 4 Persentase Nilai	105

DAFTAR GAMBAR

Gambar 2. 1 Rigging
Gambar 2. 2 Hasil Blend Shape4
Gambar 2. 3 Perbedaan IK dan FK5
Gambar 2. 4 Joint dan Bone
Gambar 2. 5 Proses Weight Painting
Gambar 2. 6 Film Animasi 3D
Gambar 2.7 Referensi Karakter dari film Lucas the Spider9
Gambar 2. 8 Referensi bentuk karakter dan tingkah laku dari film The Owl & Co
Gambar 2. 9 Uji Kelayakan Cerita oleh Supervisor MSV11
Gambar 2. 10 Script Ada Mada
Gambar 2. 11 Karakter Mada
Gambar 2. 12 Karakter Sappo
Gambar 2. 13 Storyboard
Gambar 2. 14 Animatic Film "Ada Mada"
Gambar 3. 1 Tampilan Fase Awal Pembuatan Bentuk Kelopak Mata26
Gambar 3. 2 Tampilan Add Target Setelah Create Blend Shape27
Gambar 3. 3 Proses Sculpting Pada Area Kelopak Mata Dengan Set Value 1.000
Gambar 3. 4 Tampilan Kembali Seper <mark>ti Semula</mark> Pada Set Value 0.00028
Gambar 3. 5 Mirror Tar <mark>get Pada Menu Shape</mark> 28
Gambar 3. 6 Tampilan Kelopak_R Setelah Memakai Mirror Target Set Value
1.000
Gambar 3. 7 Tampilah Kelopak_R Setelah Memakai Mirror Target Set Value
0.000
Gambar 3. 8 Tampilan Lokasi Menu Alat Driven Key
Gambar 3. 9 Tampilan Driven Key
Gambar 3. 10 Tampilan Menu Select Blend Shape Node
Gambar 3. 11 Memuat Node Kedalam Alat Driven Key

Gambar 3. 12 Tampilan Hasil Memuat Kedua Objek Node ke Dalam Alat Driven
Key
Gambar 3. 13 Proses Minimum Key Pada Kedua Attribute
Gambar 3. 14 Proses Maksimum Set Key Pada Kedua Attribute
Gambar 3. 15 Hasil Akhir Bentuk Kedua Kelopak Mata33
Gambar 3. 16 Tampilan Fase Awal Pembuatan Bentuk Alis Mata34
Gambar 3. 17 Tampilan add target setelah create blend shape
Gambar 3. 18 Proses sculpting pada area alis mata dengan set value 1.00035
Gambar 3. 19 Tampilan kembali seperti semula pada set value 0.000
Gambar 3. 20 Mirror Target pada menu Shape
Gambar 3. 21 Tampilan Alis_R setelah memakai mirror target set value 1.000.36
Gambar 3. 22 Tampilah Alis_R setelah memakai mirror target set value 0.000.37
Gambar 3. 23 Tampilan lokasi menu alat driven key
Gambar 3. 24 Tampilan Driven Key
Gambar 3. 25 Tampilan menu select blend shape node
Gambar 3. 26 Memuat node kedalam alat driven key
Gambar 3. 27 Tampilan hasil memuat kedua objek node ke dalam alat driven key
Gambar 3. 28 Proses minimum key pada kedua attribute
Gambar 3. 29 Proses maksimum set key pada kedua attribute
Gambar 3. 30 Hasil akhir bentuk kedua alis mata
Gambar 3. 31 Tampilan Fase Awal Pembuatan Mata Berkedip
Gambar 3. 32 Tampilan add target setelah create blend shape
Gambar 3. 33 Proses sculpting pada area mata berkedip dengan set value 1.00043
Gambar 3. 34 Tampilan kembali seperti semula pada set value 0.00044
Gambar 3. 35 Tampilan lokasi menu alat driven key44
Gambar 3. 36 Tampilan Driven Key45
Gambar 3. 37 Tampilan menu select blend shape node
Gambar 3. 38 Memuat node kedalam alat driven key46
Gambar 3. 39 Tampilan hasil memuat kedua objek node ke dalam alat driven key

.

Gambar 3. 40 Proses minimum key pada kedua attribute47
Gambar 3. 41 Proses maksimum set key pada kedua attribute48
Gambar 3. 42 Hasil akhir bentuk mata berkedip48
Gambar 3. 43 Tampilan Fase Awal Pembuatan Ekspresi Marah49
Gambar 3. 44 Tampilan add target setelah create blend shape49
Gambar 3. 45 Referensi pada ekspresi marah
Gambar 3. 46 Proses sculpting pada ekspresi marah dengan set value 1.00050
Gambar 3. 47 Tampilan kembali seperti semula pada set value 0.00051
Gambar 3. 48 Tampilan lokasi menu alat driven key
Gambar 3. 49 Tampilan Driven Key
Gambar 3. 50 Tampilan menu select blend shape node
Gambar 3. 51 Memuat node kedalam alat driven key
Gambar 3. 52 Tampilan hasil memuat kedua objek node ke dalam alat driven key
Gambar 3. 53 Proses minimum key pada kedua attribute
Gambar 3. 54 Proses maksimum set key pada kedua attribute
Gambar 3. 55 Hasil akhir bentuk ekspresi marah
Gambar 3. 56 Tampilan Fase Awal Pembuatan Ekspresi Sedih
Gambar 3. 57 Tampilan Add Target Setelah Create Blend Shape
Gambar 3. 58 Referensi ekspresi sedih
Gambar 3. 59 Proses Sculpting Pada Ekspresi Sedih Dengan Set Value 1.00057
Gambar 3. 60 Tampilan Kembali Sep <mark>erti Semul</mark> a Pada Set Value 0.000
Gambar 3. 61 Tampilan Lokasi Menu Alat Driven Key
Gambar 3. 62 Tampilan Driven Key
Gambar 3. 63 Tampilan Menu Select Blend Shape Node
Gambar 3. 64 Memuat Node Kedalam Alat Driven Key
Gambar 3. 65 Tampilan Hasil Memuat Kedua Objek Node ke Dalam Alat Driven
Key61
Gambar 3. 66 Proses Minimum Key Pada Kedua Attribute61
Gambar 3. 67 Proses Maksimum Set Key Pada Kedua Attribute
Gambar 3. 68 Hasil Akhir Bentuk Ekspresi Sedih

Gambar 3. 69 Tampilan Fase Awal Pembuatan Ekspresi Takut
Gambar 3. 70 Tampilan Add Target Setelah Create Blend Shape63
Gambar 3. 71 Referensi pada Ekspresi Takut
Gambar 3. 72 Proses Sculpting Pada Ekspresi Takut Dengan Set Value 1.00064
Gambar 3. 73 Tampilan Kembali Seperti Semula Pada Set Value 0.00065
Gambar 3. 74 Tampilan Lokasi Menu Alat Driven Key65
Gambar 3. 75 Tampilan Driven Key
Gambar 3. 76 Tampilan Menu Select Blend Shape Node67
Gambar 3. 77 Memuat Node Kedalam Alat Driven Key
Gambar 3. 78 Tampilan Hasil Memuat Kedua Objek Node ke Dalam Alat Driven
Key
Gambar 3. 79 Proses Minimum Key Pada Kedua Attribute
Gambar 3. 80 Proses Maksimum Set Key Pada Kedua Attribute
Gambar 3. 81 Hasil Akhir Bentuk Ekspresi Takut
Gambar 3. 82 Tampilan Fase Awal Pembuatan Ekspresi Terkejut
Gambar 3. 83 Tampilan Add Target Setelah Create Blend Shape
Gambar 3. 84 Referensi ekspresi terkejut
Gambar 3. 85 Proses Sculpting Pada Ekspresi Terkejut Dengan Set Value 1.000
Gambar 3. 86 Tampilan Kembali Seperti Semula Pada Set Value 0.00072
Gambar 3. 87 Tampilan Lokasi Menu Alat Driven Key
Gambar 3. 88 Tampilan Driven Key
Gambar 3. 89 Tampilan Menu Select Blend Shape Node74
Gambar 3. 90 Memuat Node Kedalam Alat Driven Key74
Gambar 3. 91 Tampilan Hasil Memuat Kedua Objek Node ke Dalam Alat Driven
Key75
Gambar 3. 92 Proses Minimum Key Pada Kedua Attribute75
Gambar 3. 93 Proses Maksimum Set Key Pada Kedua Attribute76
Gambar 3. 94 Hasil Akhir Bentuk Ekspresi Terkejut
Gambar 3. 95 Tampilan Fase Awal Pembuatan Bentuk Pupil77
Gambar 3. 96 Tampilan Add Target Setelah Create Blend Shape77

Gambar 3. 97 Proses Move Objek Pada Pupil Mata Dengan Set Value 1.00078		
Gambar 3. 98 Tampilan Kembali Seperti Semula Pada Set Value 0.000		
Gambar 3. 99 Proses Move Objek Pada Pupil Mata Arah Kebawah Dengan Set		
Value 1.00079		
Gambar 3. 100 Proses Move Objek Pada Pupil Mata Arah Kekanan Dengan Set		
Value 1.000		
Gambar 3. 101 Proses Move Objek Pada Pupil Mata Arah Kekiri Dengan Set		
Value 1.000		
Gambar 3. 102 Proses Scale Objek Pada Pupil Mata Mengecil Dengan Set Value		
1.000		
Gambar 3. 103 Tampilan Dua Controller Untuk Kedua Pupil		
Gambar 3. 104 Tampilan Lokasi Limit Translate Pada Attribute Editor		
Gambar 3. 105 Tampilan Proses Limit Pada Controller Pupil Mata		
Gambar 3. 106 Tampilan Lokasi Menu Alat Driven Key		
Gambar 3. 107 Tampilan Driven Key		
Gambar 3. 108 Tampilan Menu Select Blend Shape Node		
Gambar 3. 109 Memuat Node Kedalam Alat Driven Key		
Gambar 3. 110 Tampilan Hasil Memuat Kedua Objek Node ke Dalam Alat		
Driven Key		
Gambar 3. 111 Tampilan Translate Y Dengan Nilai 1 Pada Channel Box85		
Gambar 3. 112 Proses Key Pada Attribute Translate Y axis dengan		
Pupil_kiri_keatas85		
Gambar 3. 113 Tampilan Translate Y Dengan Nilai -1 Pada Channel Box86		
Gambar 3. 114 Proses Key Pada Attribute Translate Y axis dengan		
Pupil_kiri_kebawah86		
Gambar 3. 115 Tampilan Translate X Dengan Nilai -1 Pada Channel Box87		
Gambar 3. 116 Proses Key Pada Attribute Translate X axis dengan		
Pupil_kiri_kekanan87		
Gambar 3. 117 Tampilan Translate X Dengan Nilai 1 Pada Channel Box		
Gambar 3. 118 Proses Key Pada Attribute Translate X axis dengan		
Pupil_kiri_kekiri88		

Gambar 3. 119 Tampilan Translate Y Dengan Nilai 1 Pada Channel Box		
Gambar 3. 120 Proses Key Pada Attribute Translate Y axis dengan		
Pupil_kanan_keatas		
Gambar 3. 121 Tampilan Translate Y Dengan Nilai -1 Pada Channel Box90		
Gambar 3. 122 Proses Key Pada Attribute Translate Y axis dengan		
Pupil_kanan_kebawah90		
Gambar 3. 123 Tampilan Translate X Dengan Nilai -1 Pada Channel Box91		
Gambar 3. 124 Proses Key Pada Attribute Translate X axis dengan		
Pupil_kanan_kekanan91		
Gambar 3. 125 Tampilan Translate X Dengan Nilai 1 Pada Channel Box92		
Gambar 3. 126 Proses Key Pada Attribute Translate X axis dengan		
Pupil_kanan_kekiri92		
Gambar 3. 127 Tampilan Proses Scale Limit Pada Controller Pupil Mata93		
Gambar 3. 128 Tampilan Scale Y Dengan Nilai 0.5 Pada Channel Box		
Gambar 3. 129 Proses Key Pada Attribute Translate Y Axis Dengan		
Pupil_kiri_ <mark>m</mark> enge <mark>cil Pada Angka 0.500</mark>		
Gambar 3. 130 Tampilan Scale Y Dengan Nilai 0.5 dan Scale X Dengan Nilai		
0.5 Pada Channel Box95		
Gambar 3. 131 Proses Key Pada Attribute Translate X Axis Dengan		
Pupil_kiri_mengecil Pada Angka 1.000		
Gambar 3. 132 Tampilan Scale Y Dengan Nilai 0.5 Pada Channel Box96		
Gambar 3. 133 Proses Key Pada Attribute Translate Y Axis Dengan		
Pupil_kanan_meng <mark>ecil Pada Angka 0.500</mark> 96		
Gambar 3. 134 Tampilan Scale Y Dengan Nilai 0.5 dan Scale X Dengan Nilai		
0.5 Pada Channel Box97		
Gambar 3. 135 Proses Key Pada Attribute Translate X Axis Dengan		
Pupil_kanan_mengecil Pada Angka 1.00097		
Gambar 3. 136 Controller ekpresi wajah dan pupil		
Gambar 3. 137 Controller Pada Kedua Taring		
Gambar 3. 138 Controller Pada Kepala Karakter		

DAFTAR LAMPIRAN

Lampiran 1 Sertifikat Kompetensi	110	
Lampiran 2 Sertifikat IP BOOT CAMP	112	
Lampiran 3 Pengantar Magang dan Kontrak Magang113		
Lampiran 4 Hasil Evaluasi Magang	114	
Lampiran 5 Sertifikat <mark>Pese</mark> rta BECC (Bhayangkara Enterpreneurship		
Concept Competition)	115	
Lampiran 6 <mark>Naska</mark> h Film Animasi "Ada Ma <mark>da"</mark>	116	
Lampiran <mark>7 Storyb</mark> oard Anim <mark>as</mark> i "Ada Mada"	121	
Lampiran <mark>8 Uji</mark> Kelayak <mark>an</mark> Cerita Oleh Supe <mark>rvi</mark> sor MSV	125	
Lampiran 9 <mark>H</mark> asil Penilaian dari ahli 3D	129	
Lampiran 10 L <mark>i</mark> nk Anim <mark>atic Film Animasi "A</mark> da Mada"	134	
Lampiran 11 Link Kar <mark>ya Film Animasi "Ada M</mark> ada"		

DAFTAR LAMBANG DAN SINGKATAN

- 3D Tiga Dimensi
- FK Forword Kinematic
- IK Inverse Kinematic
- L Left
- R Right

DAFTAR ISTILAH

Mesh	Jaring pada objek
Joint	Sendi pada objek karakter
Bone	Tulang pada objek karakter
Rigging	Proses pembuatan tulang objek karakter
Topologi	Gambaran rangka permukaan objek
Blend Shape	Proses perubahan bentuk pada salah satu objek
Forward Kinematics	Cara kerja pada satuan sendi
Inverse Kinematics	Cara kerja beberapa sendi yang mengikuti ujung sendi
Weight Painting	Proses dalam mengubah radius jaring dengan sendi
Channel Box	Panel yang menampilkan informasi dasar objek

INTISARI

Dalam proses pemberian atau pemasangan tulang objek wajah karakter 3D (Facial Rigging), kebanyakan teknisi masih menggunakan cara pada umumnya yaitu membuat beberapa titik tulang pada wajah karakter 3D. Cara tersebut membuat proses pengerjaan rigging pada wajah menjadi lama Ketika harus memberi tulang pada beberapa titik wajah, sampai ke ketahap pemberian pembobotan (weighting), misalnya untuk membuat tulang wajah di perlukan beberapa titik seperti mulut, pipi, hidung, rahang, alis, hinggal kelopak mata. Saat ini beberapa perangkat lunak untuk membuat rigging sudah memiliki pembaruan alat untuk membantu dalam proses pembuatan facial rigging, salah satu nya yaitu Blend Shape yang terintegrasi pada Autodesk MAYA.

Tugas akhir ini difokuskan pada pembuatan wajah karakter 3 dimensi (Mada si tarantula) yang di buat dengan menggunakan Blend Shape. Blend Shape di gunakan untuk mengubah mesh yang dapat di manipulasi dalam attribute editor. Tahap dalam mengerjakan tugas akhir ini di mulai dari identifikasi masalah, analisis dan perancangan, implementasi, kemudian di lakukan pengujian pada fungsi yang di buat dengan menggunakan Blend Shape untuk memperoleh kesimpulan apakah fungsi tersebut memberikan hasih efisiensi pada karakter 3D atau tidak.

Hasil akhir tugas akhir ini adalah suatu fungsi dalam pembuatan wajah karakter 3D Mada si tarantula yang dibuat dengan menggunakan Blend Shape serta efisiensi dari proses facial rigging pada karakter 3D Tarantula.

Kata kunci: Facial Rigging, Blend Shape, Aniamsi 3D

ABSTRACT

In the process of providing or installing bones for a 3D character's facial object (Facial Rigging), most technicians still use the general method, namely making several bone points on the 3D character's face. This method makes the process of rigging the face take a long time. When you have to provide bones at several points on the face, up to the weighting stage, for example, to make facial bones you need several points such as the mouth, cheeks, nose, jaw, eyebrows, and even the lids. eye. Currently, several software tools for making rigging already have updated tools to assist in the process of making facial rigging, one of which is Blend Shape which is integrated into Autodesk MAYA.

This final project focuses on creating a 3-dimensional character's face (Mada the tarantula) which was created using Blend Shape. Blend Shape is used to change the mesh which can be manipulated in the attribute editor. The stages in working on this final assignment start from problem identification, analysis and design, implementation, then testing on the function created using Blend Shape to obtain a conclusion whether the function provides efficiency results for 3D characters or not.

The final result of this final project is a function in creating the face of the 3D character Mada the Tarantula which was created using Blend Shape as well as the efficiency of the facial rigging process on the 3D Tarantula character.

Keyword: Facial Rigging, Blendshape, 3D Animation