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ABSTRACT

Since the first case in 2019, Corona Virus has been spreading all over the
world. World Health Organization (WHO) announced that COVID-19
had become an international pandemic. There is an essential section to
handle the spreading of the virus by immediate virus detection for patients.
Traditional medical detection requires a long time, a specific laboratory,
and a high cost. A method for detecting Covid-19 faster compared to
common approaches, such as RT-PCR detection, is needed. The method
demonstrated that it could produce an X-ray image with higher accuracy
and consumed less time. We propose a novel method to extract image
features and to classify COVID-19 using deep CNN combined with
Autoencoder (AE) dubbed CAE-COVIDX. We evaluated and compared it
with the traditional CNN and existing framework VGG16 involving 400
normal images of non-COVID19 and 400 positive COVID-19 diseases. The
performance evaluation was conducted using accuracy, confusion matrix,

and loss evaluation. Based on experiment results, the CAE-COVIDX
framework outperforms previous methods in several testing scenarios. This
framework's ability to detect Covid-19 in various nonstandard image X-
rays could effectively help medical employers diagnose Covid-19 patients.
It is an important factor to decrease the spreading of Covid-19 massively.

This is an open access article under the CC-BY-SA license.

1. Introduction

The novel coronavirus has spread massively across countries all over the world. World Health
Organization officially named the virus COVID-19. The widespread of the virus, which was first
recognized in Wuhan China at the end 0f2019, has changed billions of people’s daily lives globally and
has resulted in significant financial and non-financial losses. According to WHO reports (Fig. 1),
COVID-19 has spread to most countries around the world. On October 5% 2020, as shown by the
official WHO website, 35,708,008 people had been infected by COVID-19, and 1,001,715 died [1].
Today, the world population is still combating the virus, and the spread of the virus throughout the
world population cannot be reduced significantly. Confirmed Covid-19 cases are found in many parts of
the world, which means the virus has spread in all countries.

An important approach to handle COVID-19 is the speed screening of infected people. For example,
people infected should be able to receive treatment immediately, such as increasing their immunity
through the provision of vitamins and nutrition. Patients infected by covid-19 should also be isolated to
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prevent the spread of the virus. The common procedure to test the patients is using the Reverse
Transcription Polymerase Chain Reaction (RT-PCR) test for COVID-19. This detection model requires
a long time to obtain final results, needs several laborious tools, and involves complicated handcraft parts
with limited stock [2]. Recent evidence reports that RT-PCR detection only had 30-60% accuracy.
Moreover, the detection test is inconvenient, needs nasopharyngeal test swabs, and it is costly. On the
other hand, the COVID-19 test using X-ray images is widely available, and the scanning process is
inexpensive. In addition, this test produces the final results more quickly.
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Fig. 1. Number of Covid-19 cases around the world

Patient infection indications include dyspnea, cough, respiratory symptoms, and fever. In most severe
cases, the infection causes multi-organ failure, pneumonia, acute respiratory syndrome, septic shock, and
death. Following the recent finding announced by Chinese government officials, the detection of
COVID-19 can use blood sample testing or respiration as important identification key factors for RT-
PCR. However, for common public health emergencies, RT-PCR's inaccuracy is what causes the late
detection of most COVID-19 patients. COVID-19 is categorized as pneumonia infection, whereas
pneumonia is a lung infection caused by bacteria, viruses, or fungi. The virus refers to an inflammation
of the pulmonary airbags (alveoli) and fluid or pus. It can make it difficult for oxygen to enter the
bloodstream. Fig. 2 is an example of a patient's lungs obtained by a photo scan.
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Fig. 2. Example of the CT scan image for COVID-19 infection (A, B, and C) and non-COVID-19 infection
(D, E, and F). All of the images similar, making it very hard to generalize the classification algorithm.

The Computed Tomography (CT) scan of the chest is a popular approach to detect pneumonia.
Some proposed methods involve machine learning using CT photo examination equipment to conduct
B |
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virus detection, monitoring, and quantification of COVID-19. This tool plays an important role in
detecting patients infected with COVID-19. X-ray machines are common tools to detect bone
dislocations, tumors, cancer, lung diseases, and pneumonia. The CT scan (Fig. 3), particularly with an

Fig. 3. Example of lung image obtained by a CT-Scan machine

According to the literature review from previous works, several experts have proposed an automatic
COVID-19 detection model using the deep learning model. CNN is a sub-class of the deep learning
approach with tremendous achievements in computer science application fields such as computer vision,
image processing, voice recognition, text processing, and video processing [4][5]. Especially in COVID-
19 detection, CNN has also become a popular method to develop the dlassification learning model to
detect COVID-19 diseases based on X-ray chest images. One of the novels CNN models introduced is
computer vision [6]. It becomes one of the modern deep learning methods based on CNN, widely used
in several computer science applications with tremendous performance over existing traditional neural
network models [7]. For automatic COVID-19 detection application spedfically, we have collected data
from a major computer science digital library that shows a detailed characteristic dataset in Table 1.

Some researchers have attempted to achieve better performance for the classification model following
previous work using X-ray image classification. There is a slight difference in achievement between
researchers. For example, [8] when they try to classify images to detect three categories of the condition,
including bacteria pneumonia, virus pneumonia, and normal patients. The majority of researchers have
also conducted research to achieve effectiveness in classification tasks. They consider adopting CNN as
major machine learning to obtain COVID-19 detection. Unfortunately, the majority of CNN adoption
only reaches low effectivity. There are several challenges open to improving the existing models.

Multi-layer CNN is also involved in this research category, such as [9], [10], [11] adopting Rest-net
and VGG16 as a deep learning platform based on CNN. Their work achieves a better target over generic
CNN. The ResNet adoption model reaches 86% accuracy, and ResNet achieves 90% accuracy in larger
dataset adoption. DeTrac [12] involved CNN with transfer learning, decompose, and composing
processes to classified chest X-ray images. A study adopted fuzzy to preprocessing dataset consist
pneumonia, Covid-19 and normal. They implement deep learning platforms include MobileNetV2 and
SqueezeNet [13]. A proposed model using deep hybrid learning consists of CNN, vanilla neural network,
VGG, and capsule network [14]. A different model using multi-view fusion segmentation involves deep
learning based on the Restnet50 framework [15]. A study to investigate several deep learning platforms
considers ten frameworks: AlexNet, VGG-16, VGG-19, SqueezNet, GoogleNet, MohileNet-V2,
ResNet-18 ResNet50, ResNet-101 success in classified COVID-19. According to their experiment
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report where RestNer-101 success in achieved performance over another deep learning platform [16].
Several studies mentioned above, the using deep learning and preprocessing approach influences the
performance of detection achievement. In some cases, the deep learning platform using ResNet has
proven better performance than some deep learning platforms.

Table 1. The previous works using the ML approach
Ref.  Material Datasets Objective Method Result
C :
. 45 COVID-19, 931 Bacteria ;te‘i’m?’
[8] ATy Pneumonia, 660 Virus acteria CNN 83.5% Accuracy
image . . Pneumonia/Virus
Pneumonia, 1203 Normal. .
Pneumonia/Normal
CT-scan - Caregary: o
[11] images 51 COVID-19, 55 Normal COVID-19/ Normal UNET ++ 95.2% Accuracy
- CT-scan = Cartegory: o o .
[17] images 496 COVID-19, 1385 Normal COVID-19/other CNN 94.1% Sensitivity
Category:
(1 ~CTsen 44 BB, 55 Virus COVID-19/Virus CNN 82.9% Accuracy
images Pneumonia P .
neumonia.
CT- Cartegory:
[10] <LTsen 88 COVID-19, 86 Normal COVID-19/ Bacteria ResNet-50 86% Accuracy
images .
Pneumonia /Normal
_ - Cartegory:
(199 CTsan 219 COWI?;T?]’ _ ﬂI"ﬂ”E”‘“’ COVID-19/ CNN 86.7% Accuracy
{mages omt Influenza/Normal
_ ~ Cartegory: o
p] CTsan  46BCOVID-19,1551CAP, (o 80 0 o eesso 90.0% (Sens.)
images 1445 Non-pneumonia. . 96.0% (Spec.)
pneumonia.
87.9% Accuracy
CT-scan Category: o
20 1658 COVID-19, 1027 CAP RF 90.7% Si
201 ges : COVID-19/CAP cnsvEy
833 (Spec.)
87.5% Accuracy
CT-scan . <
[21] . 176 COVID-19 patients Severity assessment RF 93.3 (TPR)
Hmages 74.5% (TNR)
X-ray = Category: e o
[22] images 70 COVID-19/normal COVID-19/a0rmal CNN 92.9% Accuracy

Automatic COVID-19 detection, firstly proposed using CNN, involves transfer learning [23]. The
research involves specific datasets of 224 confirmed positive COVID-19 diseases, 700 confirmed common
bacteria pneumonia, and 504 normal conditions. According to the experiment report, they
achieved 96.46% accuracy in performance. Considering transfer learning with traditional CNN becomes
the contribution to achieving better performance over the traditional CNN approach. Indeed, in the case
of transfer learning adoption, it needs to collect larger datasets of the image of COVID-19 patients in
which, until today, the availability of data is tough to collect.

Another researcher proposed a novel model with 17 layer CNN called Darknet [24]. The model
achieves 88.02% accuracy for multi-class cases. COVID-NET, a novel model of deep learning with an
autoencoder (AE) model mechanism, has been involved in detecting this virus disease [25]. The
experiment was conducted on datasets of 1044 patients with 449 COVID-19 patients confirmed, 397
different types of pathology, 98 with lung cancer, and 100 normal conditions. Their model achieves
higher than 93% under the ROC curve. Unlike the sub-class of CNN, AE relies on feature extraction
to obtain the classification of COVID-19 disease.

Combining deep learning class using CNN and transfer learning based on Alex Net was proposed
[26]. The model is very simple where it just adopts 1 Convolutional layer and then incorporates it with
the preprocessing image from the Alex Net model. Their model claimed to reach 94% accuracy [27].
On the other hand, the Alex Net framework's involvement reaches better enrichment over traditional
CNN that most researchers in this field apply.
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A new model of COVID-19 detection based on the image that obtained CT-Scan using pre-train

using CNN [28], Another study also using optimization deep learning machine based on CNN

incorporated with Bayesian, They called Bayesian Convolutional Neural Network (BCNN) [22]. A study

involves anomaly detection based on deep learning [29]. This model adopts 18-layer CNN, ImageNet

pre-trained image datasets. According to the evaluation report, they reach a sensitivity of 96.00%. [30]

A study applied DenseNet deep learning platform aims to classify COVID-19 (+) or COVID (-).

ImageNet considers adopting to utilized image feature extraction. According to the experiment report,
this model superior to the competitor in previous work.

According to the reference mentioned above, two important factors will become challenges in the
future: the sensitivity of the amount of data and the feature learning platform in calculating image layers.
It is used to produce classification tasks that would achieve better accuracy performance to detect
COVID-19 disease using lung X-ray images. Therefore, We proposed a novel model to generate
automatic COVID-19 detection by applying the hybrid dual deep learning approach based on the
convolutional neural network (CNN) and autoencoder (AE) model, which is called CAE-COVIDX. Qur
design considers the hierarchical model of CNN and AE to detect cases more accurately. CNN leads to
dimensional reduction, which has shortcomings in data feature representation. Meanwhile, AE has
specific characteristic advantages in feature extraction. On the other hand, our proposed model combines
both models to achieve better accuracy when detecting people infected by COVID-19. Our research
contributions propose a novel method to extract image features based on X-ray chest images using lung
image feature characteristics and a novel method to classify COVID-19 diseases using hybrid CNN and
AE to determine disease infection.

2. Method

Our proposed model is called CAE-COVIDX, which uses different machine learning models which
involve dimensional reduction features by CNN and feature extraction representation by AE platform.
We called our framework CAE (Convolutional Autcencoder) as the core feature selection to learning
classification tasks to distinguish COVID-19 patients from normal patients. This model really inspired
the enhancement of the CNN platform to classify datasets in the case of MNIST image characteristics
[31]. Our complete name, CAE-COVIDX, consists of 4 essential steps to obtain final results based on
machine learning which are as follows: 1) image lung COVID-19 data acquisition, 2) data image
preprocessing, 3) proposed hybridization model of CNN and AE, and 4) training process and evaluation.

2.1. Convolutional neural network

CNN categories of neural network sub-class achieved success in the computer science field research
and application [32]. CNNs are hierarchical models in which convolutional layers alternate with
subsampling layers, evocative of the primary visual cortex's basic and complex cells (Fig. 4). Three
fundamental building blocks comprise the network architecture, which must be stacked and compiled
as needed. A convolutional layer, a max-pooling layer, and a dassification layer are all included. CNNs
are one of the most widely used models for supervised image classification, and they set the bar high for
a variety of benchmarks. Additionally, convolutional neural networks employ multi-stage, multi-stage
trainable architectures. Function maps are collections of array values that serve as the input and output
of each point factor.

O1{1]T0L0)07 -
00| 1{1tefo]0]- 1[4]3 41
olofolafafijo 1{o]1 12(4]3]3
ololo[TT4{o[0]= 1{o] = [1]2]3]4]1
olofj1{1]|o]o]0 1{of1 1(3[3[1]1
oli1|1]ofofo]o 3(3[1]1]0
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Fig. 4. The basic concept of the convolutional neural network
—_—
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2.1.1. Autoencoder

We note the underlying concepts of auto-encoder models where the basic autoencoder (Fig. 5) begins
with input x € R% and the second essential aspect associated with the first map of latent representation
he R applying deterministic approach given the formula h = f8 = o(W%a? 4+ b? = ¢? + b) using
parameter scenario @ = {W, b}. This mechanism adopted to extract the input uses convert mapping
with fry = f0'(h) =cg(W'h +b") where 8’ = {W'h + b'}. These two formulations must be
constrained with W’ = W7, by applying a similar value for encoding as an input layer, and extraction
becomes the latent representation of the decoding process.

Reconstructed

Input < Ideally they are identical. input

x~x

Encoder Decoder
X - > - - x’

Fig. 5. Basic concept autoencoder

2.1.2. A hybrid of convolutional and autoencoder (CAE)

Both AE and DAE ignore the structure of the two-dimensional image. This is not only considered
when working with practical inputs, but it also ensures parameter consistency, resulting in each attribute
being global. However, vision and object recognition are toward discovering localized features that
reinforce one another in the input. CAEs are distinguished from conventional AEs because their weights
are exchanged between all input locations, preserving spatial localization. Restoration is then attributed
to a linear combination of simple image patches dependent on the latent code. CAE architecture is
conceptually identical to segment architecture, except for shared weights. For a single-channel input x,
the k-th function map's latent representation is given (1).

h¥ = a(X = X* + bk) (1

Where the bias is uniformly distributed across the map, it is a combination of an activation function (in
all of our experiments, we used the scaled hyperbolic tangent) and a two-dimensional convolution. We
use a single latent map distraction because any filter to specialize in the entire input set of features (one
distraction per pixel is too free) by acquiring reconstruction (2).

y=0Zeenh* xW* +¢ (2)

—
Where ¢ represents bias per input channels, H is a group of latent feature maps, Wk represents an
operation of both dimensions of weight. The backpropagation algorithm is used to measure the error
function gradient to the parameters for regular networks. Convolution operations can conveniently do

this by using (3).

wzx*é'hk+ﬁk*é'y 3)

awk
Where The symbol of 6h and 8y represent the delta of the hidden layer and reconstruction layer, the
mechanism updates of shared weights adopt the stochastic gradient descent.
B |
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A max-pooling layer is commonly used to accomplish translation invariants throughout hierarchical

networks in general and CNNs specifically. Max extracts samples of latent representations via a steady

component, generally take the highest value across non-supervalent subregions. This contributes to the

filter's selectivity by determining the "fit" between the function and the input field across the region of

interest in order to activate each neuron in a latent representation. Initially, max-pooling was reserved
for architectures with fully supervised feed forwarding.

A max-pooling sheet was added to spares the representation secret of non-overlapping sub-regions,
removing all non-maximum values. It forces the detectors to implement more extensively, ignoring
trivial solutions like just one "on" weight (identity function). Reducing the average number of filters
leading to each pixel's decoding during the reconstruction period requires filters to be more general.
Also, It does not need L1 and/or L2 over hidden units regularization and/or weights with a max-pooling
layer.

Many AEs can be designed as a stack to form a profound hierarchy; for example, from the layer latent
representation, and each layer receives its input. Deep belief networks adequate to adopt in veracious,
then weights can be modified with backpropagation, or the SVMs could use the highest stage activations
as attribute vectors or other classification instruments. In another case, a CNN with the same topology
can be initialized by the CAE model. The detailed work mechanism of the convolutional layer process
and autoencoder process are shown in Fig, 6.

Fig. 6. The hybridization of CNN and AE model (CAE)

The illustration in Fig. 6 explains the initial stage of taking an X-ray image collected from GitHub
datasets. Then the image dimensions are converted into dimensions 254x254. The convolution process
transforms the images into 32 with image dimensions of 254x254, and the dimensional reduction stage
transforms the image into 127x127. That means the filtering process uses a 2x2 mechanism. Then the
sequential process transforms the image into 126x126, 63x63, 62x62, 31x31. The last convolutional
process taken is 31x31, and this dimension is the smallest image convolutional result. The next stage is
transforming the image dimension into larger dimension sizes with the deconvolutional process. The
deconvolutional process is similar to a convolutional process, but the main difference is that this aims to
enlarge the dimensions of the image, in contrast to the convolutional process aiming to reduce image
dimensions.
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The second essential task is putting the last convolutional process results in terms of 8@31x31 image
dimensions and the transforming process into larger slicing and reducing the dimensional image into
29x29 dimensions. The further process is to reduce the image dimension into a smaller one to generate
only one possibility, including 32@7x7, 32@5x5, 32@2x2, and then the flattening process to convert
image dimensions into single vectors as a result of classification tasks.

2.1.3. CAE-COVIDX framework

The explanation above is the essence of the CAE engine's basic mechanism work, which is a
combination of CNN and AE. CAE machines can normally work in order to detect a patient is infected
with COVID-19 or not. Indeed, it requires several stages and some elements to complete the tasks.
Following Fig. 7, several steps include collecting datasets. This experiment uses datasets of patient lung
images from GitHub, involving 400 normal patients and 400 images of patients infected with COVID-
19. Pre-processing is needed so that the image can be calculated by the feature learning that the CAE
model will carry out.

Images Datassts [
(400 fiormal & 400 image pre-processing / acquisinen | resizing L”W Evaluaion Result
COVID-19)
: ) I u u‘l 1. Confusion matix,
) . 2. Model accuracy,
, | imagepre- . selion . madel Logs
processing augmen . . 3. Accuracy

e

The final process is to evaluate the detection results of CAE-COVIDX by adopting three famous
evaluation methods that are often used by researchers in classification cases, such as confusion matrix,
accuracy. The second section of the evaluation step compares the performance of the CAE-COVIDX
model with several existing state-of-the-art methods.

Fig. 7. CAE-COVIDX architecture

2.2. Evaluation Metrics

Specific metrics were recorded for the CNNs classification task: (a) positive diseases correctly
classified (True Positives, TP), (b) negative diseases incarrectly classified (False Negatives, FN), (o)
negative diseases correctly classified (True Negatives, TN), and (d), positive diseases incorrectly classified
(False Negatives, FP). According to the procedure, TP denotes cases of COVID-19 that are appropriately
expected, FP denotes normal or pneumonia cases classified as COVID- 19 cases by CNN, and TN denotes
normal or pneumonia cases categorized as non-COVID-19 cases. On the other hand, FN refers to
COVID-19 cases that are classified as normal or common pneumonia. Due to the study's primary
objective of detecting COVID-19, two distinct accuracies are measured. The first accuracy is referred to
as the accuracy of three levels and refers to the model's total precision when the three divisions (normal
pneumonia-COV) are distinguished. The second precision refers exclusively to COVID-19 accuracy. In
other words, if a case is considered typical and pneumonia is classified as such by CNN, then the COVID-
19 existence is deemed appropriate. As mentioned previously, precision is referred to as 2-class precision.

We developed two task models in practice that distinguish COVID-19-infected patients from
bacteria-infected patients and healthy controls, respectively. For each mission, the patienc-level was
divided randomly into 60% to train the models, 10% validation sets to fine-tune the hyperparameter
for optimal performance, and 30% of the test sets to independently tested the final optimal models.
Furthermore, the evaluations were measured based on the Precision, Accuracy, Recall, and confusion
matrix. Equations (4), (5), and (6) represent the evaluation model scenario's symbols.
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TP+TN
Accuracy = TP+FP+TN+FN )
Precision = (5)
TP+FP
Recall = —= (6)
TP+FN

TP represents the true positives, TN for the true negatives, FP as the false positives, and FN for the
false negatives. We have also measured computation level efficiency to achieve the accuracy using the
loss model and accuracy, including the number of literacies to reach convergence.

2.3. Datasets of Chest X-ray

Several X-ray references have been accessed for the experiments. Next, the GitHub repository for the
associated datasets was examined. A set of Cohens X-ray images [33] has been chosen. Both photos and
data are currently published in https://github.com/ieee8023/covid- chestxray-dataset. According to the
explanation above, the collected images are ready for public consumption. The data collected comprises
400 images of the COVID-19 patients, 400 images of common pneumonia confirmed patients, and 504
normal patients.

2.4, Pre-processing

The X-ray images have been resized to 254x254 pixels. To obtain flawless rescaling to 200x266, a
black background ratio of 1:1.5 was applied to the images of various pixel rations to prevent distortions.
The reader should note that the CNNs can ignore a small positional variance, which means they look
for patterns in particular image positions and moving patterns.

The basic X-ray necessary resized and rescaled before processing to the input layer of the network.
There is different characteristic of every deep learning platform, for instance, SqueezeNet needs to be
resized into 227x227 pixels. Other platforms, such as VGG16, VGG19, ResNet, and DenseNet require
224 x 224 pixels, while Inceptionv3 requires to be rescaled into 299 x 299 pixels size. Consider COVID-
19 positive chest X-ray includes 400, also 400 set number of normal X-ray images in this experiment.

2.5. Tools and Library

Image processing is categorized as high computation research. In recent years, deep learning
application leads to the use of GPU to calculate classification tasks. An NVIDIA 17-8700k central
processing unit (CPU) is used as a trial server, but GPU GeForce GTX 1080ti has also been included.
The time to stop relied primarily on the number of image layers in one set of CTs. On average, for a CT
set with 70 layers, it took less than 30 seconds to go from preprocessing data to report output. Additional
deep-learning modules including Keras, TensorFlow, and Python 3 are essential tools to achieve this
research successfully.

3. Results and Discussion

As a critical tool for (diagnosis, deep learning techniques for pneumonia identification and
classification can accurately distinguish between non-COVID-19 pneumonia and infectious pneumonia
COVID-19; designing a suitable approach for reducing time and unnecessary resources is interesting. In
this research, We developed a pneumonia classification model based on 800 datasets, which are divided
into 400 COVID-19 infected and 400 COVID- 19 non-infected samples and 800 X-ray images obtained
from GitHub. To demonstrate the utility of our proposed CAE-COVIDX architecture, we compared it
to traditional CNN and VGG16.

As seen in Table 2, our CAE-COVIDX outperforms traditional CNN and popular deep learning
frameworks based on CNN (VGG16). According to the experiment report, CAE-COVIDX also
successfully increases accuracy by around 2-4 percent. To ensure performance stability, we conducted
the training experiment 5 times, including CNN, VGG16, and CAE-COVIDX. Table 2 shows that
CAE-COVIDX is superior to previous popular work in 5 training scenarios where our method produces

fairly stable accuracy results at 0.98.
—
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Table 2. Accuracy performance results
Section CNN VGGIl6 CAE-COVIDX
1 0.96 0.95 0.98
2 0.94 0.95 0.98
3 0.96 0.9 0.98
4 0.94 0.9 0.98
5 0.96 0.96 0.98

As demonstrated in Table 3, CAE-COVIDX achieved better performance and is stable enough
compared to CNN and VGGL6 in several schematic training model scenarios due to efficient information
extraction. These deep learning models' high output also revealed well-distinguished CT images of
patients with pneumonia and healthy people. The generic CNN model and VGG16 achieved unstable
performance with lower effectivity compared to the CAE-COVID19 model. It can be inferred that two
training scenarios inform different results where CNN and VGG 16 reach low performances compared to
the proposed model. Comparing CNN and VGG16, both of them have similar achievements in this
training result. In all sections, CAE-COVIDX outperform both models. CNN and VGG16 share
performance results where they almost produce the same performance.We conducted three training
evaluation scenarios based on the confusion matrix to evaluate random effect performance in the image
selection process. The experiment reported in Fig. 8 shows that our proposed model achieves significant
performance over previous work based on confusion matrix evaluation.
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Fig. 8. Evaluation of confusion matrix training result. (a), (b), and (C) are first evaluation; (d), (¢), and (f) are
the second evaluation; and (g), (h), and (i) are the third evaluation.
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Following the confusion matrix test section, consider repeating until three times testing with random

image selection. Our model achieves good performance, and this is demonstrated with the level of error

result are very low. The minimum error matrix of this model shows in Fig. 8 (g). Compared to CNN

(Fig. 8 (h)) and VGG16 (Fig 8 (i), CAE-COVIDX stays outperform with significant results in three

testing sections. We believe that the impact of minimum error result due to feature extraction (AE)

mixed with dimensional reduction (CNN). The lost information obtained by dimensional reduction
(CNN platform) applied in common deep learning models can be eliminated by using the AE feature.

In the third evaluation model, we considered applying model accuracy and model loss to compare the
proposed algorithm with previous works. The dewils of the results are shown in Fig. 9 and Fig. 10.
According to this performance evaluation, CAE-COVIDX achieved the best performance compared to
CNN and VGG16. However, our model requires more iteration to reach convergence. The number of
iterations between VGG16 and CAE-COVIDX is almost similar. On the other hand, both models are
categorized as high computation even though they achieved different performances where CAE-
COVIDX performed better in 2-time training scenarios.

Report for (Tran. 72.00% | Vahdation. B.00% | Test. 20.00%) set
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Fig. 9.First evaluation of accuracy and loss model
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Fig. 10. The Second evaluation of accuracy and loss model

The second scenario (Fig. 10) shows that they reached almost similar results with previous evaluation
work, including performance achievement and the number of iterations needed for all models. It can be
| —
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concluded that even though the image in training is randomly chosen, the proposed model performance
achieves stability and also the better performance with the famous algorithm.

4. Conclusion

This research shows the deep learning approach viability to help medical employees, and doctors
diagnose COVID-19 patients and automatically recognize lesions from X-ray and CT-scan images.
Additional feature extraction features by AE into CNN have proven in accuracy performance. Moreover,
another advantage of CAE-COVIDX is the result of the classification tasks more consistent even the
input of the X-ray images is not standard. The proposed system achieved better performance to detect
and classify both images of common pneumonia and Covid-19 images. Our analysis has some drawbacks
due to the relatively large number of variable objects, especially those outside the lungs that are irrelevant
for pneumonia diagnosis; it caused the dlassification of CT images to be complicated. In our research,
only one radiologist worked out of the ROIregion. The training data collection is comparatively limited.
This system's efficiency is expected to improve as training intensity increases. It should also be
remembered tha, at later stages of disease progression, we examined the characteristics of the CT images
from severe lung lesions patients. Research to correlate this with improvement and all COVID-19
pathological phases is required to refine the diagnostic method. It is challenging to conduct future
research in hierarchical links between CT image features and future considerations such as
epidemiological and clinical multi-omics, genomics, and multi-modeling for improved diagnostic
accuracy.
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